# **Experimental Searches for Dark Matter**

Sunil Golwala Caltech DPF2009 July 27, 2009

#### Overview

- Why Dark Matter?
- The Particle Dark Matter Zoo
- Specific candidates and search techniques, with editorial selection
  - Sterile Neutrinos
  - Axions
  - WIMPs

# Why Dark Matter?



- Most of the matter is in the form of *dark matter*, matter that interacts gravitationally but not electromagnetically,  $\Omega_{DM} = \rho_{DM}/\rho_{crit} = 0.20\pm0.03$
- The remainder is in the form of baryons,  $\Omega_B = \rho_B / \rho_{crit} = 0.042 \pm 0.004$ (though much of this has not yet been directly observed!)

#### **Required Dark Matter Characteristics**

- Dark matter must be:
  - Cold/warm (not hot):
    - nonrelativistic at matter-radi equality (z ~ 3500) to seed L
       M < keV (e.g., v) too hot.</li>
  - Nonbaryonic
    - Light element abundances

       Big Bang Nucleosynthesis measure baryon density: too
    - Baryonic matter could not collapse until recombination (z ~ 1100): too late to seed
- Locally, we know
  - density ~ 0.1-0.7 GeV/cm<sup>3</sup>:
    - ~I proton/3 cm<sup>3</sup>, ~I WIMP/coffee cup
  - velocity: simplest assumption is Maxwell-Boltzmann distribution with  $\sigma_v \approx 270$  km/s (recently increased based on VLBA maser measurements!)



#### The Particle Dark Matter Zoo

#### Neutrinos

- only massive (sterile) neutrinos can be cold or warm. Low-mass neutrinos make hot dark matter.
- Axions
  - Form as Bose condensate in early universe: cold in spite of low mass
- Weakly Interacting Massive Particles (WIMPs)
  - new massive (~100 GeV) particle with electroweak scale interactions with normal matter
  - SUSY neutralino
  - Lightest Kaluza-Klein particle in universal extra dimensions
- Less compelling candidates:
  - SUSY gravitinos (SuperWIMPs) and axinos
  - WIMPzillas, SIMPzillas, primordial black holes, Q-balls, strange quark nuggets, mirror particles, CHArged Massive Particles (CHAMPs), self interacting dark matter, D-matter, cryptons, brane world dark matter...



### Massive Sterile Neutrinos

- keV sterile neutrino
  - acts as warm dark matter: cold enough to form structure correctly, hot enough to fix some cosmological quandaries
  - Produced in early universe by oscillations of active neutrinos (Dodelson-Widrow (DW) mechanism) E<sup>o</sup>
  - Decays to (M/2) photons via SM penguin diagrams
- Limits
  - overclosure
  - x-ray emission from decays
    - bounds will improve with future X-ray satellites (Astro-H and IXO): sensitivity limited by energy resolution
- A. Kusenko excluded (x rays) 10 limit pulsar kicks (allowed) Lyman– $\alpha$  bound for production above 100 GeV dark matter produced via DW 10<sup>-12</sup>  $10^{-11}$ 10<sup>-10</sup> 10<sup>-9</sup> 10<sup>-8</sup> 10<sup>-7</sup> sin<sup>2</sup>θ

(mixing angle with active neutrinos)

- Lyman- $\alpha$  forest: too light a neutrino is too hot, washing out small-scale structure
  - Bounds may improve with better understanding of systematics in measurements and simulations
- pulsar kicks: asymmetry in scattering of neutrinos off magnetic-field-polarized electrons and nucleons results in asymmetric neutrino emission
  - improvements perhaps with better modeling of supernovae

#### Axions

#### G. Raffelt



# **Axion Direct Search Techniques**

Cosmologically interesting: provides appropriate  $\Omega_{DM}$ ,  $m_a = I \mu eV$  to I meV

- Microwave cavity conversion
  - $I GHz = 4 \mu eV$ : use high-Q tunable cavity in high B field; when  $f_0 = m_a$ , excess power

ma

- Detection: RF amplifier + Fourier transform power spectrum, excited Rydberg atom photodetection
- Can cover  $\sim I \mu eV$  to 100  $\mu eV$ ; cavities become too small >  $100 \mu eV$
- With µwave SQUID amplifier and colder cavity, will test full KSVZ-DFSZ range





# **Axion Direct Search Techniques**

Cosmologically interesting: provides appropriate  $\Omega_{DM}$ ,  $m_a = I \mu eV$  to I meV

- Solar axions
  - Photons convert to axions via Primakoff process in sun; ~keV thermal kinetic energy
  - Axion-conversion telescopes sensitive to  $\sim I = V$  axions; too massive to be CDM, could be HDM (though  $\ll \Omega_{DM}$ )
  - Higher masses probed by Bragg scattering searches
  - Beginning to probe DFSZ and **KSVZ** models



# Axion Direct Search Techniques

Cosmologically interesting: provides appropriate  $\Omega_{DM}$ ,  $m_a = 1 \ \mu eV$  to 1 meV



- Other laboratory searches
  - $\gamma \rightarrow a \rightarrow \gamma$  in B field; relatively poor sensitivity bec. two vertices; very far away from plausible models
    - Shining light thru walls. Will be more sensitive w/high Q optical cavities in future.
    - B-induced polarization rotation;
       PVLAS polarization rotation signal has disappeared in second measurement
    - B-induced birefringence
  - Torsion pendulum (Eot-Wash group)
    - Axions mediate a P and T violating force between electrons and nucleons
    - Look for violations of  $1/r^2$

### WIMPs

- A WIMP  $\delta$  is like a massive neutrino: produced when T >>  $m_{\delta}$  via pair annihilation/ creation. Reaction maintains thermal equilibrium.
- If interaction rates high enough, comoving density drops as  $exp(-m_{\delta}/T)$  as T drops below  $m_{\delta}$ : annihilation continues, production becomes suppressed.
- But, weakly interacting → will
   "freeze out" before total annihilation if

$$H > \Gamma_{ann} \sim \frac{n_{\delta}}{\langle \sigma_{ann} \, v \rangle}$$

i.e., if annihilation too slow to keep up with Hubble expansion

• Leaves a relic abundance:

$$\Omega_{\delta} h^2 \approx \frac{10^{-27}}{\langle \sigma_{ann} v \rangle_{fr}} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$$

- → if  $m_{\delta}$  and  $\sigma_{ann}$  determined by new weak-scale physics, then  $\Omega_{\delta}$  is O(1)
- LSP in R-parity conserving SUSY is an ideal WIMP: x=m/T (time →) weak-scale cross-section, neutral, stable. But WIMPs are not SUSY-specific!



# Supersymmetric WIMPs

- SUSY lightest superpartner w/ R-parity cons. is WIMP(-like)
- Neutralino LSP  $\delta$ 
  - mixture of bino, wino, higgsinos; spin 1/2 Majorana particle
  - Allowed regions
    - bulk:  $\delta$  annih. via t-channel slepton exchange, light h, high BR( $b \rightarrow s\gamma$ ) and  $(g-2)_{\mu}$ ; good DD rates
    - stau coann:  $\delta$  and stau nearly degenerate, enhances annihilation, low DD rates
    - focus point: less fine-tuning of REWSB,  $\delta$  acquires higgsino component, increases annihilation to W, Z, good DD rates
    - A-funnel: at high tan  $\beta$ , resonant s-channel annihilation via A, low DD rates
- Gravitino LSP: nondetection interesting!

 $\chi^2$  of fit to BR(b  $\rightarrow$  s $\gamma$ ), muon g-2, and relic density (dominated by relic density: avoid overclosure)

DMSAG mSugra with  $tan\beta = 54$ ,  $A_0 = 0$ ,  $\mu > 0$ al, in 2000 1750 et 12 Baer 1500 stau coannihilation 10 1250  $m_{1/2} (GeV)$  $ln(\chi^2/DOF)$ 8 1000 Actor of PCUS DOIN 750 4 500 2 250 No REWSB 0 bulk -0 1000 2000 3000 4000 5000 6000 0  $m_0(GeV)$  $m_h = 114.1 GeV$ LEP2 excluded **SuperCDMS CDMSII** predictions

DPF2009/Experimental Searches for Dark Matter

report

#### Universal Extra Dimensions WIMPs

- Kaluza-Klein tower of partners due to curled-up extra dimension of radius R
  - n = quantum number for extra dimension,  $m_n^2 \sim n^2/R^2$
  - momentum cons. in extra dim.  $\rightarrow$  exact cons. of KK particles (KK parity)
  - KK parity  $P_{KK} = (-1)^n$  implies lightest KK partner (n = 1) is stable

q

•  $B^{(1)}$ , n = 1 partner of B gauge boson, is lightest KK partner in simple cases



Q

2000

100

300

 $M_{B(1)}[GeV]$ 

500 700 1000

200

### Astrophysical Detection and Colliders



### Indirect Searches

- In many places, the WIMP density becomes large enough for annihilation to occur in spite of low cross sections: galactic haloes/ cores, Sun, Earth
- Annihilation products:
  - fermion pairs (via Z, A, sfermion exchange), though note helicity suppression for SUSY neutralino WIMPs, which are Majorana
  - gluons, which hadronize
  - Z,W, Higgs, which decay to fermions
  - neutrinos (direct production at exactly  $m_{\delta}/2$ , continuum from decays of other products)
  - photons (via 2nd-order diagrams only, at  $m_{\delta}/2,$  continuum from decays of other products )
  - stable hadrons and antihadrons (from hadronization of antiquarks)
  - synchrotron emission (resulting from electron products near the galactic center spiraling in the mG magnetic field)
- Caveats
  - Very dependent on modeling of dark matter density, esp. its clumpiness



S. Profumo

C Addison-Wesley Longman

















### Neutrinos

- WIMPs suffer energy loss via elastic scattering with p and n in Sun
  - density at galactic center, elsewhere in halo not large enough
  - density predictions pretty solid
- WIMPs annihilate to neutrinos, yielding continuum signal:
  - Directly produced neutrinos lose energy as they leave sun
  - Much bigger phase space for neutrinos from decay of other annihilation products
- Search for V<sub>μ</sub> via upward-going μ in
   V telescopes such as IceCube, Antares
  - Sensitive to SUSY-relevant mass range, ≈100 GeV
  - To first order, sensitivity of neutrino searches and direct detection are proportional because both scale with nucleon-scattering cross-section



Green excluded by direct detection, blue allowed



# Gamma Rays

- Two types of instruments
  - GLAST: satellite mission with large silicon strip tracker + Csl calorimeter, sensitive up to few x 100 GeV
  - Air Cerenkov Telescopes (ACTs): ground-based telescope collecting Cerenkov light from gamma-ray air showers; E > tens of GeV → few GeV (future km<sup>2</sup> array)
  - (Ground-based air-shower arrays, E > I TeV)
- Requires large clumping factors
  - J ~  $\langle \rho^2 \rangle / \langle \rho \rangle^2$  ~ 1000 possible in galaxies depending on density profile
  - Astro bgnds problematic
- Current limits
  - HESS GC limit not useful yet
  - HESS Sagittarius dwarf, Whipple M15, Ursa Minor, Draco limits begin to be interesting, but requires modeling to calculate J



### Gamma Rays

- Two types of instruments
  - GLAST: satellite mission with large silicon strip tracker + Csl calorimeter, sensitive up to few x 100 GeV
  - Air Cerenkov Telescopes (ACTs): ground-based telescope collecting Cerenkov light from gamma-ray air showers; E > tens of GeV → few GeV (future km<sup>2</sup> array)
  - (Ground-based air-shower arrays, E > I TeV)
- Requires large clumping factors
  - J ~  $\langle \rho^2 \rangle / \langle \rho \rangle^2$  ~ 1000 possible in galaxies depending on density profile
  - Astro bgnds problematic
- Current limits
  - HESS GC limit not useful yet
  - HESS Sagittarius dwarf, Whipple M15, Ursa Minor, Draco limits begin to be interesting, but requires modeling to calculate J



# Gamma Rays

- Two types of instruments
  - GLAST: satellite mission with large silicon strip tracker + Csl calorimeter, sensitive up to few x 100 GeV
  - Air Cerenkov Telescopes (ACTs): ground-based telescope collecting Cerenkov light from campa-ray air showers; E > tens of Celescope few GeV (future km<sup>2</sup> array)
  - (Ground-based air-shower arrays,
- Requires large clumping factors
  - J ~ (ρ<sup>2</sup>) / (ρ)<sup>2</sup> ~ 1000 possible in galaxies depending on density profile
     Astro bgnds problematic
  - Current limits

·E ≥ | TeV

- HESS GC limit not useful yet
- -HESS Sagittarius dwarf, Whipple MI5, -Ursa Minor, Draco limits begin to
- <sup>11</sup> be interesting, but requires modeling to calculate |  $M_{\chi}$  [GeV]



#### Antimatter

#### Positrons: •

- Measure dE/dx and rigidity, ID those too light to be CR and w/wrong sign to be electrons
  - key experimental issue: misidentification of p as  $e^+$ . Need  $10^3$ - $10^4$  rejection.
- HEAT balloon payload (mid-1990s) saw a bump in e<sup>+</sup>/e<sup>-</sup> consistent with WIMP annihilation
- PAMELA satellite (launched 2006) has confirmed rise in positron fraction
- ATIC, PPB-BETS balloons saw bump in total electron flux, not seen by Fermi
- PEBS balloon will measure fraction to much better precision up to 200 GeV
- See Aaron Pierce's talk for scientific interpretation



#### Antimatter

- Antiprotons
  - Previous experiments measurements have been fully consistent with expected spectrum
  - PAMELA has improved precision greatly
  - No sign of signal from vanilla WIMP consistent with positron excess
  - See A. Pierce's talk



### Antimatter



- Antideuterons
  - Antideuteron production possible during hadronization of annihilation products



- Expected flux at earth far exceeds backgrounds from cosmic ray spallation; a very different regime than positron and antiproton searches (Donato, Baer and Profumo)
- GAPS
  - Detects antideuterons by capture: Antideuteron slows to stop in detector, forms atom; antideuteron atom deexcites via X-rays and Auger electrons; annihilation into pions
  - Challenging! 200 kg of Si(Li) wafers target (~5000 4" wafers), coincidence demo'd in beam test; test flight 2009, Antarctic long-duration balloon 2013, perhaps 100-day ULDB

#### **Direct Detection: Signature**

- WIMPs collected in spherical isothermal halo: ideal gas with gravity,  $kT = \langle mv^2/2 \rangle$ ,  $\sqrt{\langle v^2 \rangle} \approx 220$  km/s
- WIMPs elastically scatter off quarks in target nuclei, producing nuclear recoils, with  $\sigma_{q\delta}$  related to  $\sigma_{ann}$  (same diagrams: via Z, h, H, and squarks)
- Energy spectrum of recoils is exponential,  $\langle E_R \rangle \sim 50$  keV, depends on WIMP and target masses: Boltzmann distribution (spherical isothermal halo) + NR s-wave scattering

$$E_0 = \frac{2 m_{\delta}^2 m_N}{\left(m_{\delta} + m_N\right)^2} v_0^2 \approx \frac{m_N}{10^6} \sim 50 \text{ keV}$$

• Amplitude of recoil energy spectrum, i.e. event rate, normalized by  $\sigma_{n\delta}$ , local WIMP number density, and nucleus-dependent  $A^2F^2(E_R)$ :

$$\frac{dR}{dE_R} \propto \frac{n_\delta \,\sigma_{n\delta}}{E_0} \,\exp\left(-\frac{E_R}{E_0}\right) \,A^2 \,F^2(E_R)$$

• At low  $E_R$ , scattering is coherent and  $\propto A^2$ . Coherence lost at larger  $E_R$  via form factor  $F^2(E_R)$ 



### Scattering Cross Sections

- In general, a Lorentz-invariant Lagrangian L has S, P,V,A interactions
- WIMP can be fermion, boson, or scalar
- In non-relativisitic limit, reduces to two cases
  - Scalar interaction, scales as A<sup>2</sup> because deBroglie wavelength is large

$$\sigma_{SI} = \frac{m_N^2}{4\pi (m_{\chi} + m_N)^2} \left[ Zf_p + (A - Z)f_n \right]^2$$

 $f_p$  and  $f_n$  are effective couplings to p and n, equal in most theories under consideration

• Spin-spin interaction couples to net nuclear spin  $J_N$ 

$$\sigma_{SD} = \frac{32}{\pi} G_F^2 \frac{m_{\chi}^2 m_N^2}{(m_{\chi} + m_N)^2} \frac{J_N + 1}{J_N} \left( a_p \left\langle S_p \right\rangle + a_n \left\langle S_n \right\rangle \right)^2$$

 $\langle S_p \rangle$ ,  $\langle S_n \rangle$  are total proton and neutron spin contributions  $a_p$  and  $a_n$  are couplings to p and n

### WIMP Direct Searches

- Fundamental goal: See a very small WIMP signal in presence of many other particles interacting in detectors (photons, electrons, alpha particles, neutrons)
- Many different techniques:
  - Reduce backgrounds
    - (HDMS, IGEX), CoGeNT: Ge γ spectrometers
    - XMASS: single-phase LXe
  - Reduce backgrounds + annual modulation
    - DAMA: Nal scintillator; KIMS: Csl scintillator
  - Statistical nuclear recoil discrimination
    - DAMA, UKDMC: pulse-shape analysis in Nal, LXe
  - Event-by-event nuclear recoil discrimination
    - phonons + ionization/scintillation: CDMS, EDELWEISS, CRESST, ROSEBUD
    - Liquid Nobles: direct electronic excitation + ionization: XENON, ZEPLIN, LUX, WArP, ArDM, DEAP/ CLEAN, etc.
    - Superheated droplets: bgnd-insensitive threshold detectors; SIMPLE, PICASSO
    - DRIFT, DMTPC: TPCs engineered for low diffusion
  - Diurnal modulation
    - DRIFT, DMTPC

#### Nuclear Recoil Discrimination



#### Annual Modulation

Residu



- WIMP wind ~ isotropic in halo frame, v<sub>rms</sub> ~ 270 km/s
- Sun travels through this cloud at 270 km/s
- Earth adds or subtracts 15 km/s (= 30  $km/s \times cos 60^{\circ}$ ) to solar velocity
- Expect ± 1-few % modulation in rate, energy deposition, depending on target and threshold
- DAMA/LIBRA: clear modulation; is it a WIMP?
- KIMS Korean Csl scintillator experiment aiming to test



### **Diurnal Modulation**

- WIMPs directional in terrestrial frame
- Direction of WIMP wind varies diurnally due to Earth's rotation
- Recoiling nucleus will preserve some directionality
- Large modulation (~ DC signal) possible in theory
- Backgrounds will be unmodulated







Figures courtesy of J. Battat

Sunil Golwala

### Cryogenic Dark Matter Search (CDMS)

- NR discrimination via total recoil energy + ionization + phonon timing/position:
  - phonon signal provides total recoil energy (athermal phonon sensor using tungsten transition-edge sensors attached to aluminum phonon absorbers)
  - ionization signal depends on density of deposition, ionization yield  $\sim 1/3$  for NRs in Ge
  - Collected using H-a-Si electrodes to minimize dead-layer effects
  - detectors close-packed with no intervening material: detectors see other clean detectors, not outside radiation sources
  - radial segmentation of electrode enables rejection of events at outer edge of detector
  - Also: CRESST, EDELWEISS, ROSEBUD (no time to discuss here)



#### CDMS

- Dead layer and athermal phonons
  - tens of µm deep "dead layer" due to loss of hot charges into "wrong" electrode before drift field takes over
  - athermal phonon sensor provides rejection: phonon signal rising edge provides 2-d imaging and sensitivity to z position; latter provides rejection of ionization dead-layer events
- Background rejection (15-45 keV, 50-70% acceptance)
  - in CDMS II:
     2 x 10<sup>-6</sup> misid of gamma events
     2 x 10<sup>-3</sup> misid of surface electron events
  - SuperCDMS: 
     I x 10<sup>-7</sup> for gammas,
     2.5 x 10<sup>-4</sup> for surface electrons
- Final CDMS II results expected late summer/early fall; see Oleg Kamaev talk for status update in PAC II, Tuesday 2pm



# SuperCDMS

- SuperCDMS Soudan:
  - I cm  $\rightarrow$  2.5 cm thickness (0.25 kg  $\rightarrow$  0.65 kg)
  - New phonon sensor design reduces surface event misid
  - New understanding that cosmogenic neutron bgnd much lower than previously expected (2000 mwe)
  - I6 kg total: 5 x 10<sup>-45</sup> cm<sup>2</sup> reach at end of 2011, likely limited by apparatus background



- Production of first 8 kg funded, proposal for second 8 kg and running submitted Oct 2008
- Breaking news (LTD13)
  - new electrode design ID's surface events with
     < 3 x 10<sup>-4</sup> misid in three independent ways;
     Need underground demo to demonstrate (3 x 10<sup>-4</sup>)<sup>3</sup>
  - EDELWEISS has similar results (one method, better limit on misid bec of underground demo)
- Enables:
  - SuperCDMS SNOLAB
    - 100 kg mass; reach of 3 x 10<sup>-46</sup> cm<sup>2</sup>
  - DUSEL Germanium Observatory for DM (GEODM)
    - 1.5 T mass, reach of 2 x  $10^{-47}$  cm<sup>2</sup>



# SuperCDMS

- SuperCDMS Soudan:
  - I cm  $\rightarrow$  2.5 cm thickness (0.25 kg  $\rightarrow$  0.65 kg)
  - New phonon sensor design reduces surface event misid
  - New understanding that cosmogenic neutron bgnd much lower than previously expected (2000 mwe)
  - I6 kg total: 5 x 10<sup>-45</sup> cm<sup>2</sup> reach at end of 2011, likely limited by apparatus background



- Production of first 8 kg funded, proposal for second 8 kg and running submitted Oct 2008
- Breaking news (LTD13)
  - new electrode design ID's surface events with
     < 3 x 10<sup>-4</sup> misid in three independent ways;
     Need underground demo to demonstrate (3 x 10<sup>-4</sup>)<sup>3</sup>
  - EDELWEISS has similar results (one method, better limit on misid bec of underground demo)
- Enables:
  - SuperCDMS SNOLAB
    - 100 kg mass; reach of 3 x  $10^{-46}$  cm<sup>2</sup>
  - DUSEL Germanium Observatory for DM (GEODM)
    - \* 1.5 T mass, reach of 2 x  $10^{-47}$  cm<sup>2</sup>



# SuperCDMS

- SuperCDMS Soudan:
  - I cm  $\rightarrow$  2.5 cm thickness (0.25 kg  $\rightarrow$  0.65 kg)
  - New phonon sensor design reduces surface event misid
  - New understanding that cosmogenic neutron bgnd much lower than previously expected (2000 mwe)
  - I6 kg total: 5 x 10<sup>-45</sup> cm<sup>2</sup> reach at end of 2011, likely limited by apparatus background



- Production of first 8 kg funded, proposal for second 8 kg and running submitted Oct 2008
- Breaking news (LTD13)
  - new electrode design ID's surface events with
     < 3 x 10<sup>-4</sup> misid in three independent ways;
     Need underground demo to demonstrate (3 x 10<sup>-4</sup>)<sup>3</sup>
  - EDELWEISS has similar results (one method, better limit on misid bec of underground demo)
- Enables:
  - SuperCDMS SNOLAB
    - 100 kg mass; reach of 3 x  $10^{-46}$  cm<sup>2</sup>
  - DUSEL Germanium Observatory for DM (GEODM)
    - \* 1.5 T mass, reach of 2 x  $10^{-47}$  cm<sup>2</sup>



# Noble Liquids/Gases

- Method:
  - ionization and direct excitation paths have different populations for nuclear and electron recoils
  - *independently*, different paths populate fast singlet and slow triplet states differently
- Implementations:
  - LXe: observe scintillation and drift e-
  - LNe: observe slow and fast scintillation
  - LAr, GXe: both



|     | Liquid<br>density<br>(g/cc) | Boiling point<br>at 1 bar<br>(K) | Electron<br>mobility<br>(cm <sup>2</sup> /Vs) | Scintillation<br>wavelength<br>(nm) | Scintillation<br>yield<br>(photons/MeV) | Long-lived<br>radioactive<br>isotopes | T | riplet molecul<br>lifetime<br>(µs) | e          |
|-----|-----------------------------|----------------------------------|-----------------------------------------------|-------------------------------------|-----------------------------------------|---------------------------------------|---|------------------------------------|------------|
| LHe | 0.145                       | 4.2                              | low                                           | 80                                  | 19,000                                  | none                                  |   | 13,000,000                         |            |
| LNe | 1.2                         | 27.1                             | low                                           | 78                                  | 30,000                                  | none                                  |   | 15                                 |            |
| LAr | 1.4                         | 87.3                             | 400                                           | 125                                 | 40,000                                  | <sup>39</sup> Ar, <sup>42</sup> Ar    |   | 1.6                                | ev –       |
| LKr | 2.4                         | 120                              | 1200                                          | 150                                 | 25,000                                  | <sup>81</sup> Kr, <sup>85</sup> Kr    |   | 0.09                               | <br> cKins |
| LXe | 3.0                         | 165                              | 2200                                          | 175                                 | 42,000                                  | <sup>136</sup> Xe                     |   | 0.03                               | _<br>Σ     |

# Noble Liquids/Gases

- Method:
  - ionization and direct excitation paths have different populations for nuclear and electron recoils
  - *independently*, different paths populate fast singlet and slow triplet states differently
- Implementations:
  - LXe: observe scintillation and drift e-
  - LNe: observe slow and fast scintillation
  - LAr, GXe: both



#### Bottom PMT Array

|     | Liquid<br>density<br>(g/cc) | Boiling point<br>at 1 bar<br>(K) | Electron<br>mobility<br>(cm <sup>2</sup> /Vs) | Scintillation<br>wavelength<br>(nm) | Scintillation<br>yield<br>(photons/MeV) | Long-lived<br>radioactive<br>isotopes | Triplet molecul<br>lifetime<br>(µs) | e       |
|-----|-----------------------------|----------------------------------|-----------------------------------------------|-------------------------------------|-----------------------------------------|---------------------------------------|-------------------------------------|---------|
| LHe | 0.145                       | 4.2                              | low                                           | 80                                  | 19,000                                  | none                                  | 13,000,000                          |         |
| LNe | 1.2                         | 27.1                             | low                                           | 78                                  | 30,000                                  | none                                  | 15                                  |         |
| LAr | 1.4                         | 87.3                             | 400                                           | 125                                 | 40,000                                  | <sup>39</sup> Ar, <sup>42</sup> Ar    | 1.6                                 |         |
| LKr | 2.4                         | 120                              | 1200                                          | 150                                 | 25,000                                  | <sup>81</sup> Kr, <sup>85</sup> Kr    | 0.09                                | lr Kins |
| LXe | 3.0                         | 165                              | 2200                                          | 175                                 | 42,000                                  | <sup>136</sup> Xe                     | 0.03                                | — Σ<br> |

# Noble Liquids/Gases

- Method:
  - ionization and direct excitation paths have different populations for nuclear and electron recoils
  - *independently*, different paths populate fast singlet and slow triplet states differently
- Implementations:
  - LXe: observe scintillation and drift e-
  - LNe: observe slow and fast scintillation
  - LAr, GXe: both



|     | Liquid<br>density<br>(g/cc) | Boiling point<br>at 1 bar<br>(K) | Electron<br>mobility<br>(cm <sup>2</sup> /Vs) | Scintillation<br>wavelength<br>(nm) | Scintillation<br>yield<br>(photons/MeV) | Long-lived<br>radioactive<br>isotopes | Т | riplet molecul<br>lifetime<br>(µs) | e          |
|-----|-----------------------------|----------------------------------|-----------------------------------------------|-------------------------------------|-----------------------------------------|---------------------------------------|---|------------------------------------|------------|
| LHe | 0.145                       | 4.2                              | low                                           | 80                                  | 19,000                                  | none                                  |   | 13,000,000                         |            |
| LNe | 1.2                         | 27.1                             | low                                           | 78                                  | 30,000                                  | none                                  |   | 15                                 |            |
| LAr | 1.4                         | 87.3                             | 400                                           | 125                                 | 40,000                                  | <sup>39</sup> Ar, <sup>42</sup> Ar    |   | 1.6                                | ey         |
| LKr | 2.4                         | 120                              | 1200                                          | 150                                 | 25,000                                  | 81 <sub>Kr,</sub> 85 <sub>Kr</sub>    |   | 0.09                               | <br> cKins |
| LXe | 3.0                         | 165                              | 2200                                          | 175                                 | 42,000                                  | <sup>136</sup> Xe                     |   | 0.03                               | — Σ<br>Ω   |

#### • XENONIO (Gran Sasso)

- First competitive LXe expt
  - 5.4 kg fiducial
  - good light collection (5 pe/keV)
  - good bgnds in in prototype
- 2007 results limited by bgnd consistent with tail of EM into WIMP acceptance region
- cutting harder will reduce NR acceptance from 50%
- Scale-up needed to reduce bgnd by self-shielding, need to maintain ionization and light collection efficiency
- ZEPLIN III (Boulby)
  - similar idea, higher bgnds, less self-shielding
  - low-bgnd PMTs in process



- XENONIO (Gran Sasso)
  - First competitive LXe expt
    - 5.4 kg fiducial
    - good light collection (5 pe/keV)
    - good bgnds in in prototype
  - 2007 results limited by bgnd consistent with tail of EM into WIMP acceptance region
  - cutting harder will reduce NR acceptance from 50%
  - Scale-up needed to reduce bgnd by self-shielding, need to maintain ionization and light collection efficiency
- ZEPLIN III (Boulby)
  - similar idea, higher bgnds, less self-shielding
  - low-bgnd PMTs in process



Energy [keVee] (based on 2.2 phe/keVee)

- XENON100 (Gran Sasso)
  - upgrade of XENON10,
    50 kg fiducial, 170 kg total
  - cold and operating since mid-2008, working on light yield and bgnd issues, physics running to begin by end 2009
  - XENON 100+: 100-kg fiducial w/QUPIDs
- LUX (Sanford/Homestake)
  - high-bgnd test cryostat for 60 kg LXe operational w/0.5 kg LXe at Case
  - Ti cryostat in fab
  - constructing surface lab
  - 4850 ft level dewatered, deploy to surface lab in Fall, 2009, underground in 2010?
- XMASS
  - single-phase: self-shielding only, shielding built, detector in process, commissioning ~start 2010



DPF2009/Experimental Searches for Dark Matter

Sunil Golwala

- XENON100 (Gran Sasso)
  - upgrade of XENON10,
    50 kg fiducial, 170 kg total
  - cold and operating since mid-2008, working on light yield and bgnd issues, physics running to begin by end 2009
  - XENON 100+: 100-kg fiducial w/QUPIDs
- LUX (Sanford/Homestake)
  - high-bgnd test cryostat for 60 kg LXe operational w/0.5 kg LXe at Case
  - Ti cryostat in fab
  - constructing surface lab
  - 4850 ft level dewatered, deploy to surface lab in Fall, 2009, underground in 2010?
- XMASS
  - single-phase: self-shielding only, shielding built, detector in process, commissioning ~start 2010

### XENON100 Statu



3 pe/keV at 662 keV = 5 pe/keV at low energy

- XENON100 (Gran Sasso)
  - upgrade of XENON10,
    50 kg fiducial, 170 kg total
  - cold and operating since mid-2008, working on light yield and bgnd issues, physics running to begin by end 2009
  - XENON 100+: 100-kg fiducial w/QUPIDs
- LUX (Sanford/Homestake)
  - high-bgnd test cryostat for 60 kg LXe operational w/0.5 kg LXe at Case
  - Ti cryostat in fab
  - constructing surface lab
  - 4850 ft level dewatered, deploy to surface lab in Fall, 2009, underground in 2010?
    - Wednesday, May 27, 2009

- XMASS
  - single-phase: self-shielding only, shielding built, detector in process, commissioning ~start 2010





- Full scale prototype cryostat with 60 kg Xe
- under test XENON100 (Gran Sa Final, Ti cryostat upgrade of XENON10, internal parts under 50 kg fiducial, T/0 kg tot fabrication cold and operating since
- Integration and is any is a standard ar laphysica cunging toopegin
  - XENO
- LUX (Sa
  - high-bg operati
  - Ti cryo
  - constru
  - 4850 ft lab in F
- XMASS
- singlebuilt, de Wednesday, May 27, 2009



- XENON100 (Gran Sasso)
  - upgrade of XENON10,
    50 kg fiducial, 170 kg total
  - cold and operating since mid-2008, working on light yield and bgnd issues, physics running to begin by end 2009
  - XENON 100+: 100-kg fiducial w/QUPIDs
- LUX (Sanford/Homestake)
  - high-bgnd test cryostat for 60 kg LXe operational w/0.5 kg LXe at Case
  - Ti cryostat in fab
  - constructing surface lab
  - 4850 ft level dewatered, deploy to surface lab in Fall, 2009, underground in 2010?
- XMASS
  - single-phase: self-shielding only, shielding built, detector in process, commissioning ~start 2010



- WArP (Gran Sasso)
  - I40-kg detector being commissioned inside passive water shield, active LAr shield
- ArDM
  - still in R&D phase, but I-ton R&D detector constructed and filled, uses fewer larger PMTs, uses LEMs for ionization gain
- DEAP/CLEAN (SNOLAB)
  - single-phase Ar/Ne
  - miniCLEAN:
     I 50 kg fiducial, 500 kg total
  - hall at SNOLAB under construction
  - detector under construction



- WArP (Gran Sasso)
  - I40-kg detector being commissioned inside passive water shield, active LAr shield

#### ArDM

- still in R&D phase, but I-ton R&D detector constructed and filled, uses fewer larger PMTs, uses LEMs for ionization gain
- DEAP/CLEAN (SNOLAB)
  - single-phase Ar/Ne
  - miniCLEAN:
     I 50 kg fiducial, 500 kg total
  - hall at SNOLAB under construction
  - detector under construction



- WArP (Gran Sasso)
  - I40-kg detector being commissioned inside passive water shield, active LAr shield
- ArDM
  - still in R&D phase, but I-ton R&D detector constructed and filled, uses fewer larger PMTs, uses LEMs for ionization gain
- DEAP/CLEAN (SNOLAB)
  - single-phase Ar/Ne
  - miniCLEAN:
     I 50 kg fiducial, 500 kg total
  - hall at SNOLAB under construction
  - detector under construction



- WArP (Gran Sasso)
  - I40-kg detector being commissioned inside passive water shield, active LAr shield

#### • ArDM

- still in R&D phase, but I-ton R&D detector constructed and filled, uses fewer larger PMTs, uses LEMs for ionization gain
- DEAP/CLEAN (SNOLAB)
  - single-phase Ar/Ne
  - miniCLEAN:
     I 50 kg fiducial, 500 kg total
  - hall at SNOLAB under construction
  - detector under construction



#### Metastable Bubble Chamber Detectors $E > E_e = 4\pi r_e^2 \left(\gamma - T \frac{\partial \gamma}{\partial T}\right) + \frac{\partial \gamma}{3}\pi r_e^3 \rho_v \frac{\partial fg}{M} + \frac{\partial \gamma}{3}\pi r_e^3 P$ , $r_e = 2\gamma/\Delta P$

Bubble chamber

 $\mathrm{d}E/\mathrm{d}x > E_c/(ar_c)$ 

- Superheated liquid or gel + energy density effect: ER deposition density too small to nucleate bubbles
   Excellent rejection of ERs: >10<sup>13</sup>
- Excellent rejection of ERs: >10<sup>13</sup>
   @ 10 keVr threshold (COUPP)



- Threshold detector, controlled by temperature & pressure.
- Video and acoustic readout
- Assorted nuclei, spin-indep (I and Br) and spin-dep (F)
- In principle, inexpensive

DPF2009/Experimental Searches for Dark Matter

65 psig

#### Metastable Bubble Chamber Detectors

#### COUPP

- video readout
- prior run of 2-kg at 300 mwe limited by α bgnd from vessel (edge events) and α events from radon emanation into bulk
- 60 kg tested at surface, running underground at 300 mwe with water shield; want to demonstrated alpha bgnd at Borexino levels
- PICASSO (SNOLAB)
  - acoustic (piezo) readout
  - I4 kg-d from 0.12 kg provides new spin-dep constraints
  - 1.9 kg running since start 2009
  - demonstrated NR/α discrim. v acoustic pulse height



COUPP 2-kg detector

> COUPP 60-kg detector surface test







# **Time Projection**

#### • DMTPC

- CF<sub>4</sub> gas: low diffusion, scintillates well
- PMTs for trigger, z information
- CCD images avalanche region to obtain energy, xy track orientation (good posn resolution with CCD, ~100 μm)
- Excellent gamma/beta rejection based on track size
- head/tail based on dE/dx: directionality!







### **Time Projection Chambers**

38

#### DMTPC

- CF<sub>4</sub> gas: low diffusion, scintillates well
- PMTs for trigger, z information
- CCD images avalanche region to obtain energy, xy track orientation (good posn resolution with CCD, ~100 μm)
- Excellent gamma/beta rejection based on track size



head/tail based on dE/dx: directionality!

#### DRIFT

- negative ion TPC, e- + CS<sub>2</sub> → CS<sub>2</sub><sup>-</sup>: drifting of heavy ion suppresses diffusion
- 2 mm pitch anode + crossed MWPC grid give xyz imaging and energy
- Excellent gamma/beta rejection based on track size
- head/tail based on dE/dx: directionality!



### **Time Projection Chambers**

#### DMTPC

QHT

0.8

0.6

0.4

0.2

100

with identifiable head/tail

ees)

Fraction of recoils

- CF<sub>4</sub> gas: low diffusion, scintillates well
- PMTs for trigger, z information
- CCD images avalanche region to obtain energy, xy track orientation (good posn resolution with CCD,  $\sim 100 \ \mu m$ )
- Excellent gamma/beta rejection based on track size
- head/tail based on dE/dx: directionality!

#### DRIFT

- negative ion TPC, e- +  $CS_2 \rightarrow CS_2$ : drifting of heavy ion suppresses diffusion
- 2 mm pitch anode + crossed MWPC grid give xyz imaging and energy
- Excellent gamma/beta rejection based on track size

head/tail based on dE/dx: directionality!



8

Nips

### **Time Projection Chambers**

#### • DMTPC

- CF<sub>4</sub> gas: low diffusion, scintillates well
- PMTs for trigger, z information
- CCD images avalanche region to obtain energy, xy track orientation (good posn resolution with CCD, ~100 μm)
- Excellent gamma/beta rejection based on track size
- head/tail based on dE/dx: directionality!
- I m<sup>3</sup> detector in fabrication, will be run underground (WIPP)

#### • DRIFT

- negative ion TPC, e- +  $CS_2 \rightarrow CS_2^-$ : drifting of heavy ion suppresses diffusion
- 2 mm pitch anode + crossed MWPC grid give xyz imaging and energy
- Excellent gamma/beta rejection based on track size
- head/tail based on dE/dx: directionality!
- Multiple underground runs of 1 m<sup>3</sup> at Boulby mine (UK), still dealing with radon emanation and daughter issues
- Demonstrated CS<sub>2</sub>-CF<sub>2</sub> mixtures for spin-dependent sensitivity

#### Spin Independent Limits



plot compiled by P. Cushman using

Gaitskell, Mandic, and Filippini

#### Spin Dependent Limits: Pure Neutron Coupling



plot compiled by P. Cushman using

Gaitskell, Mandic, and Filippini

#### Spin Dependent Limits: Pure Proton Coupling



plot compiled by P. Cushman using

#### Spin Dependent Limits: Pure Proton Coupling



plot compiled by P. Cushman using

### Spin-Dependent Limits



from PICASSO (2009) using Gaitskell, Mandic, and Filippini



#### The Future of Direct Searches

