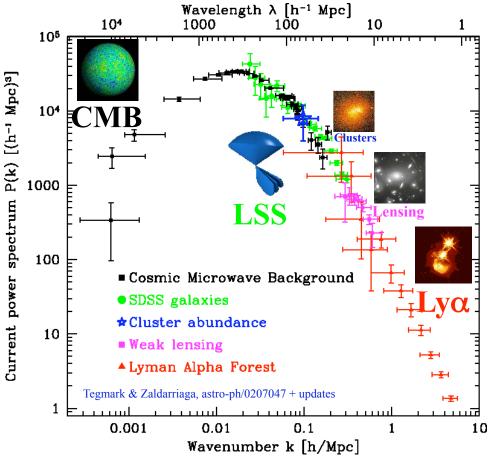
WIMP Dark Matter Searches into the Next Decade with SuperCDMS and the Germanium Observatory for Dark Matter (GEODM)

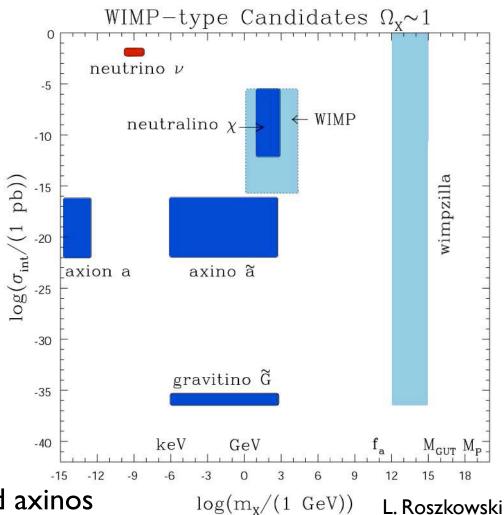
> Sunil Golwala MIT LNS Lunch Seminar Sep 8, 2009

Outline

- Motivation: the need for dark matter, WIMPs as a candidate
- CDMS II summary
- From CDMS II to SuperCDMS and GEODM
 - Backgrounds
 - Background rejection
 - Detector fab/test costs and timescales
 - Status/Timeline


Why Dark Matter?

- Most of the matter is in the form of dark matter, matter that interacts gravitationally but not electromagnetically, $\Omega_{\rm DM} = \rho_{\rm DM}/\rho_{\rm crit} = 0.20\pm0.03$
- The remaining matter is in the form of baryons, $\Omega_B = \rho_B / \rho_{crit} = 0.042 \pm 0.004$ (though most of this has not yet been directly observed!)


Required Dark Matter Characteristics

- Dark matter must be:
 - Cold/warm (not hot):
 - nonrelativistic at matter-r equality (z ~ 3500) to see M < keV (e.g., v) too hot.
 - Nonbaryonic
 - Light element abundances
 + Big Bang Nucleosynthe measure baryon density:
 - Baryonic matter could no collapse until recombinat (z ~ 1100): too late to se
- Locally, we know
 - density ~ 0.1-0.7 GeV/cm³:
 ~1 proton/3 cm³, ~1 WIMP/coffee cup
 - velocity: simplest assumption is Maxwell-Boltzmann distribution with $\sigma_v \approx 270$ km/s (recently increased based on VLBA maser measurements!)

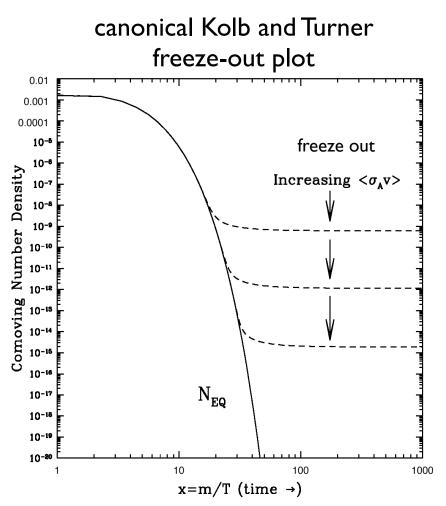
The Particle Dark Matter Zoo

- Neutrinos
 - massive neutrinos can be cold or warm; low-mass neutrinos are hot
- Axions
 - Form as Bose condensate in early universe: cold in spite of low mass
- Weakly Interacting Massive Particles (WIMPs)
 - new massive (~100 GeV) particle with EW scale interactions
 - SUSY neutralino
 - Lightest Kaluza-Klein particle in universal extra dimensions
- SUSY gravitinos (SuperWIMPs) and axinos
- Less compelling candidates:
 - Inelastic dark matter, excited dark matter, WIMPzillas, SIMPzillas, primordial black holes, Q-balls, strange quark nuggets, mirror particles, CHArged Massive Particles, self interacting dark matter, D-matter, cryptons, brane world dark matter...

WIMPs

- A WIMP δ is like a massive neutrino: produced when T >> m_{δ} via pair annihilation/ creation. Reaction maintains thermal equilibrium.
- If interaction rates high enough, comoving density drops as $exp(-m_{\delta}/T)$ as T drops below m_{δ} : annihilation continues, production becomes suppressed.
- But, weakly interacting → will
 "freeze out" before total annihilation if

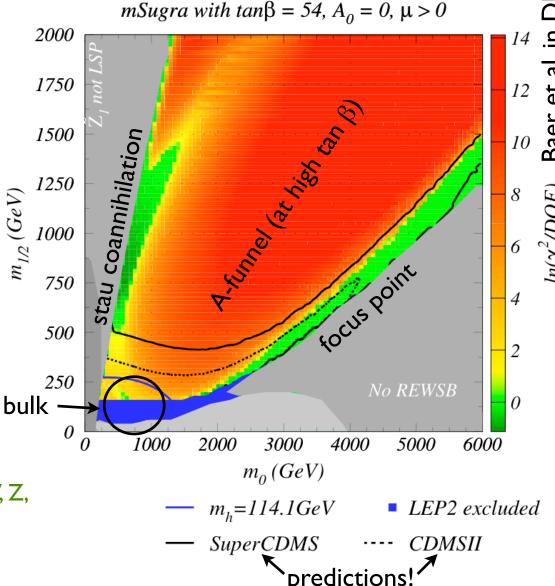
$$H > \Gamma_{ann} \sim \frac{n_{\delta}}{\langle \sigma_{ann} \, v \rangle}$$


i.e., if annihilation too slow to keep up with Hubble expansion

• Leaves a relic abundance:

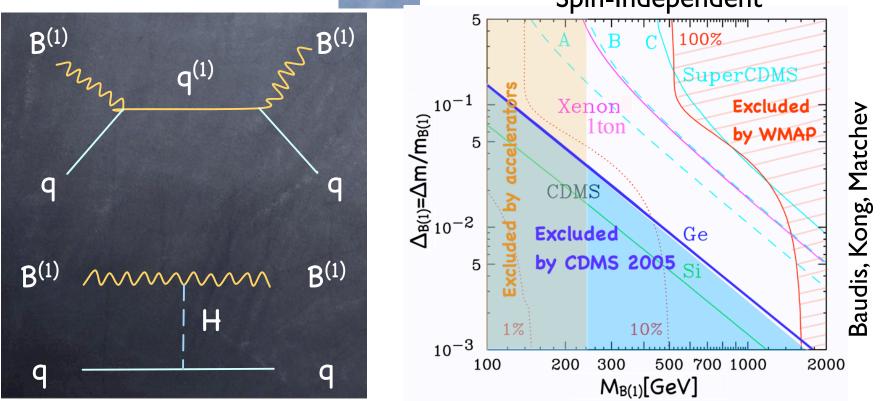
$$\Omega_{\delta} h^2 \approx \frac{10^{-27}}{\langle \sigma_{ann} v \rangle_{fr}} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$$

for $m_{\delta} = O(100 \text{ GeV})$


 \rightarrow if m_{δ} and σ_{ann} determined by new weak-scale physics, then Ω_{δ} is O(1)

Supersymmetric WIMPs

- Supersymmetry:
 - solves gauge hierarchy problem
 - improves coupling unification
- Neutralino LSP δ
 - mixture of bino, wino, higgsinos; spin 1/2 Majorana particle
 - Allowed regions
 - bulk: δ annih. via t-ch.
 slepton exchange, light h,
 high BR(b→sγ) and (g-2)_µ;
 good DD rates
 - stau coann: δ and stau nearly degenerate, enhances annih., low DD rates
 - focus point: less fine-tuning of REWSB, δ acquires higgsino component, increases annih. to W, Z, good DD rates
 - A-funnel: at high tan β , resonant s-ch. annih. via A, low DD rates


 χ^2 of fit to BR(b \rightarrow s γ), muon g-2, and relic density \bigcirc (dominated by relic density: avoid overclosure)

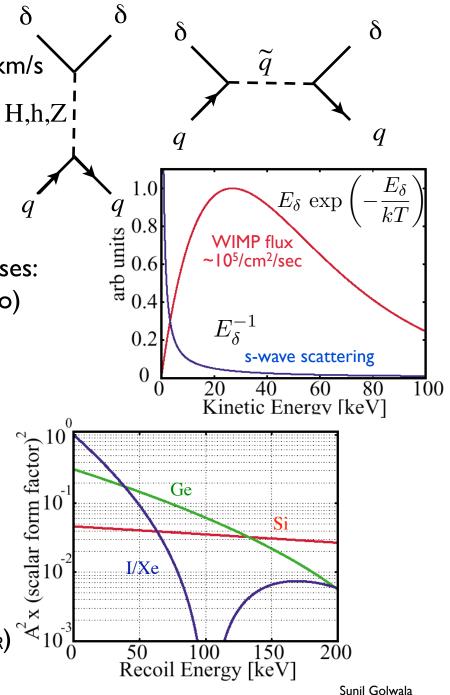
report DMSA al, in et Baer $ln(\chi^2/DOF)$

Universal Extra Dimensions WIMPs

- Kaluza-Klein tower of partners due to curled-up extra dimension of radius R
 - n = quantum number for extra dimension, $m_n^2 \sim n^2/R^2$
 - momentum cons. in extra dim. \rightarrow exact cons. of KK particles (KK parity)
 - KK parity $P_{KK} = (-1)^n$ implies lightest KK partner (n = 1) is stable
- $B^{(1)}$, n = 1 partner of B gauge boson, is lightest KK partner in simple cases
- Cross-section on quarks depends on fractional mass difference between $B^{(1)}$ and 1st KK partner of quarks, $q^{(1)}$ Spin-Independent

Direct Detection: Signature

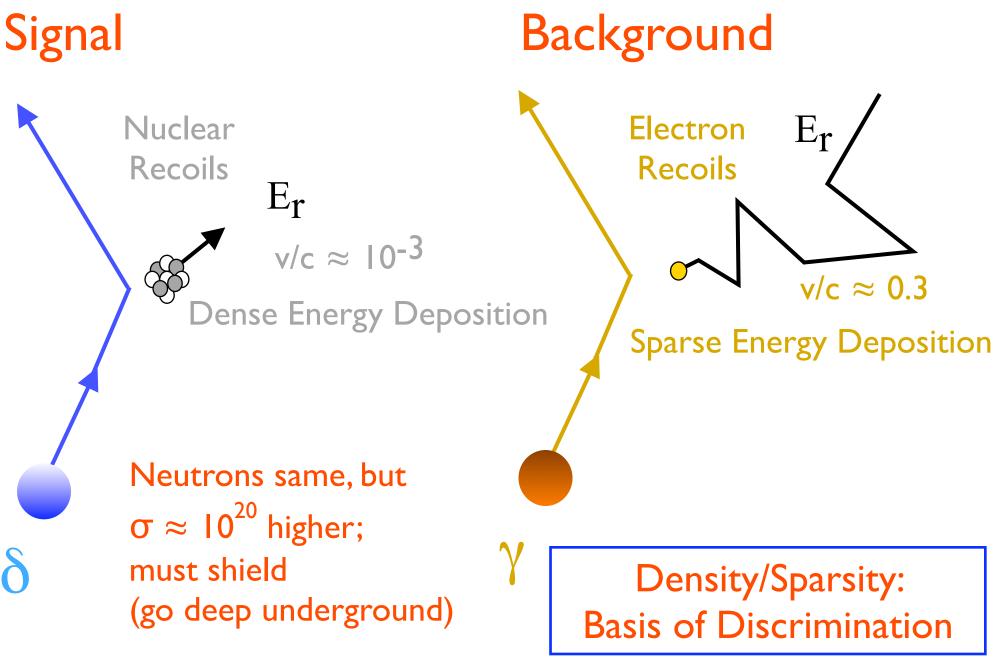
- WIMPs collected in spherical isothermal halo: ideal gas with gravity, $kT = \langle mv^2/2 \rangle$, $\sqrt{\langle v^2 \rangle} \approx 270$ km/s
- WIMPs elastically scatter off quarks in target nuclei, producing nuclear recoils, with $\sigma_{q\delta}$ related to σ_{ann} (same diagrams: via Z, h, H, and squarks)
- Energy spectrum of recoils is exponential, (E_R) ~ 50 keV, depends on WIMP and target masses:


 Boltzmann distribution (spherical isothermal halo)
 + NR s-wave scattering

$$E_0 = \frac{2 m_{\delta}^2 m_N}{(m_{\delta} + m_N)^2} v_0^2 \approx \frac{m_N}{10^6} \sim 50 \text{ keV}$$

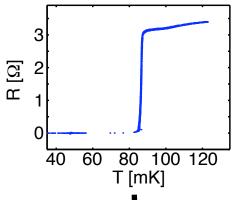
• Amplitude of recoil energy spectrum, i.e. event rate, normalized by $\sigma_{n\delta}$, local WIMP number density, and nucleus-dependent $A^2F^2(E_R)$:

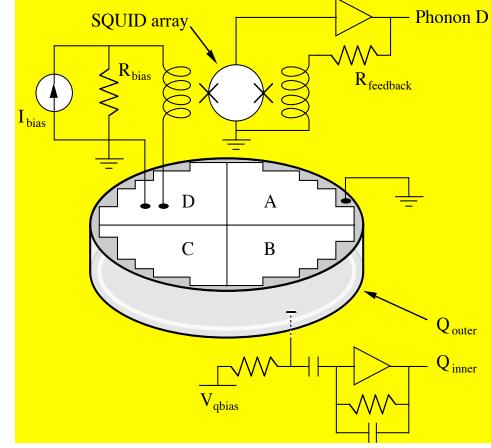
$$\frac{dR}{dE_R} \propto \frac{n_\delta \,\sigma_{n\delta}}{E_0} \,\exp\left(-\frac{E_R}{E_0}\right) \,A^2 \,F^2(E_R)$$

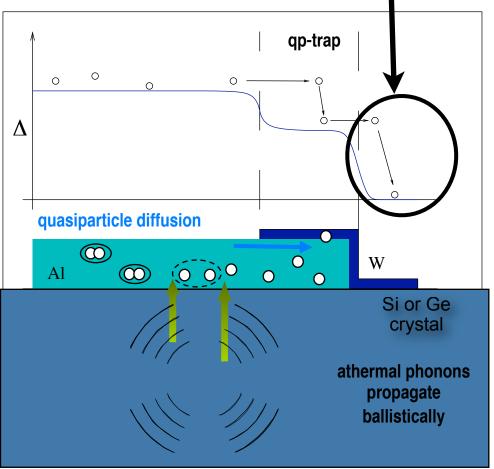

• At low E_R , scattering is coherent and $\propto A^2$. Coherence lost at larger E_R via form factor $F^2(E_R)$

Direct Detection Experiments

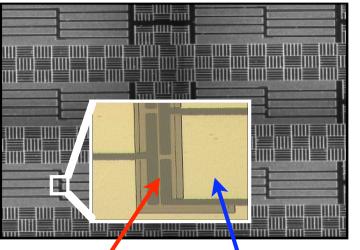
- Fundamental goal: See a very small rate of WIMP interactions with nuclei in presence of many other particles interacting in detectors (photons, electrons, alpha particles, neutrons)
- Many different techniques in use today:
 - Reduce backgrounds + annual modulation
 - DAMA: Nal scintillator, KIMS: Csl scintillator
 - Event-by-event nuclear recoil discrimination
 - phonons + ionization/scintillation: CDMS, EDELWEISS, CRESST, ROSEBUD
 - Liquid Nobles: scintillation + ionization and/or pulse-shape: XENON, LUX, ZEPLIN, WArP, ArDM, DEAP, CLEAN, etc.
 - Superheated droplets: bgnd-insensitive threshold detectors: COUPP, PICASSO
 - Gaseous time projection chambers: DRIFT, DMTPC
 - Diurnal modulation
 - Gaseous time projection chambers: DRIFT, DMTPC


Nuclear Recoil Discrimination

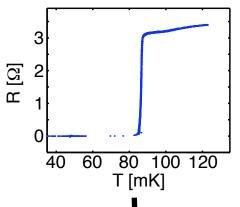


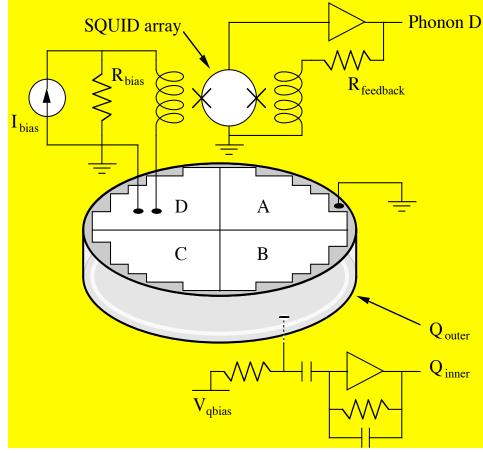


CDMS ZIP Detectors


Z-sensitive Ionization- and Phononmediated detectors: Phonon signal measured using photolithographed superconducting phonon absorbers and transition-edge sensors. TES = transition edge sensor

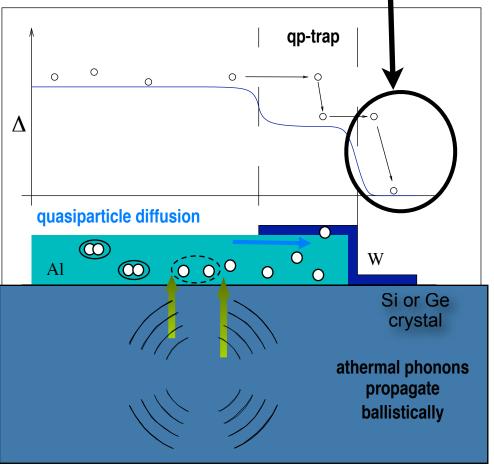
SuperCDMS/GEODM

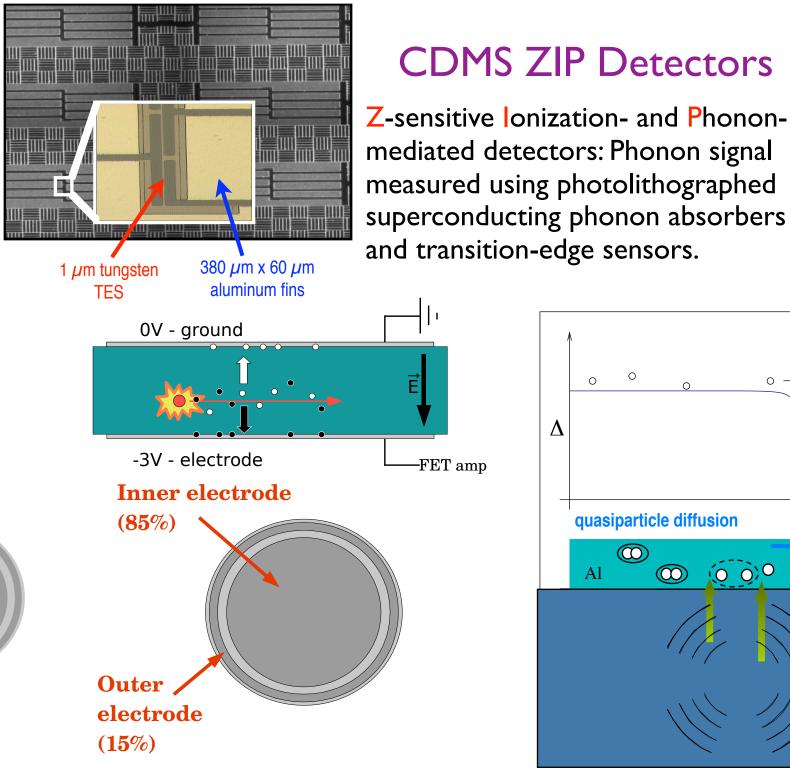


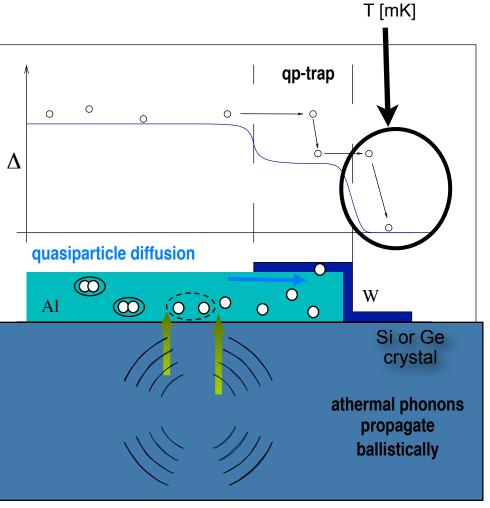

1 μ m tungsten

TES

CDMS ZIP Detectors


Z-sensitive lonization- and Phononmediated detectors: Phonon signal measured using photolithographed superconducting phonon absorbers and transition-edge sensors. TES = transition edge sensor





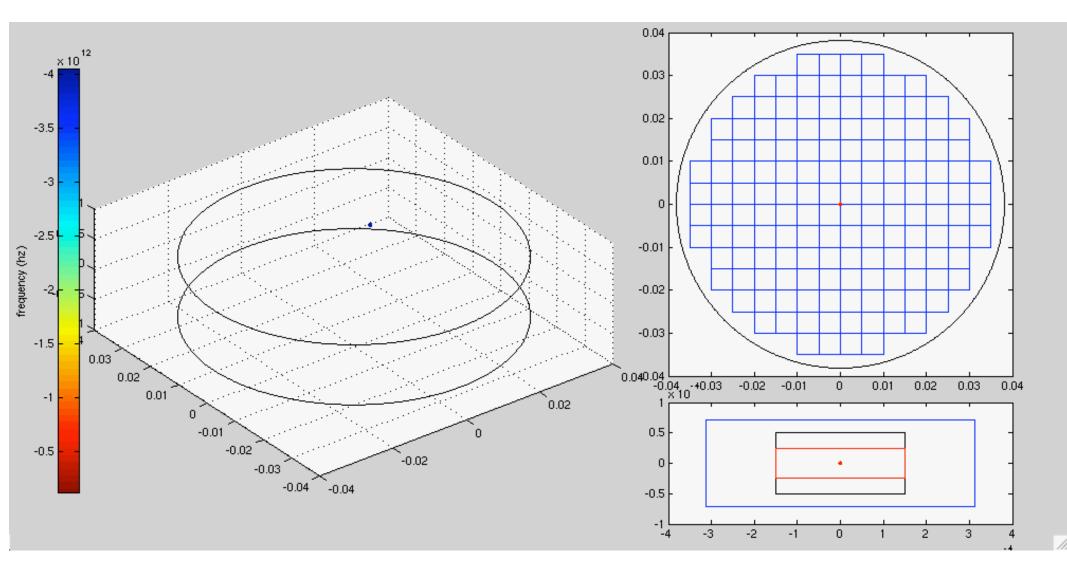
380 µm x 60 µm

aluminum fins

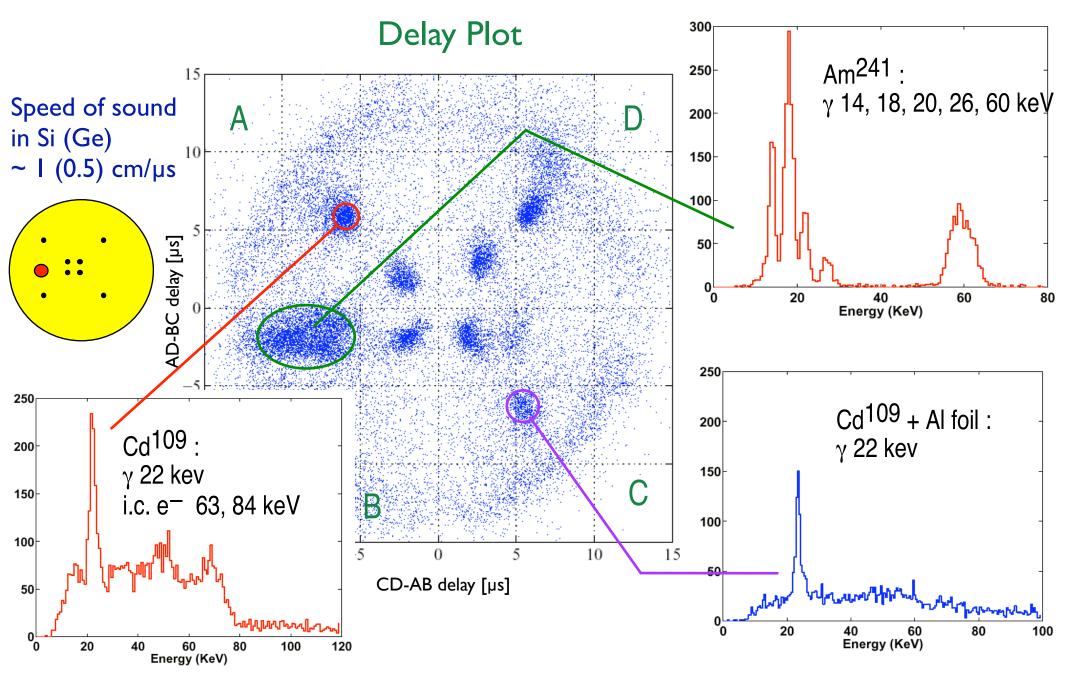
3

R [Ω]

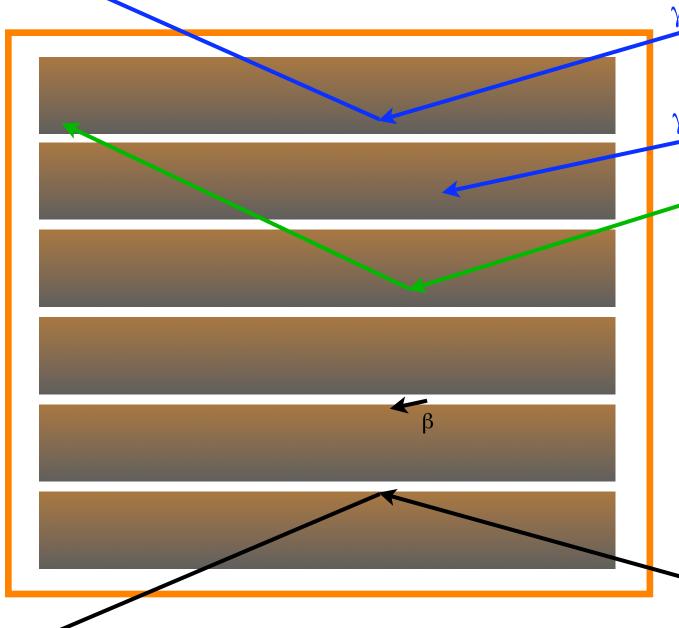
TES = transition edge sensor


80 100 120

60


40

12


ZIP Detectors

ZIP xy Position Sensitivity

Backgrounds in the CDMS II Experiment

^ν Photons (γ)

primarily Compton scattering of broad spectrum up to 2.5 MeV

small amount of photoelectric effect from low energy gammas

Neutrons (n)

n

radiogenic: arising from fission and (α,n) reactions in surrounding materials (cryostat, shield, cavern)

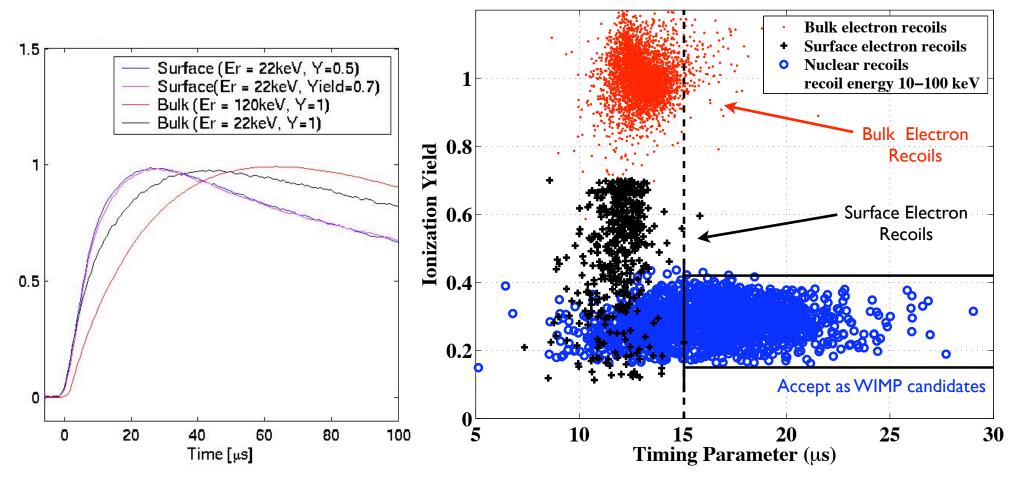
cosmogenic: created by spallation of nuclei in surround materials by highenergy cosmic ray muons.

Surface events (" β ")

radiogenic: electrons/photons emitted in low-energy beta decays of ²¹⁰Pb or other surface contaminants

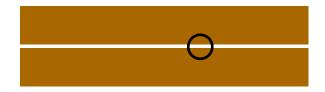
photon-induced: interactions of photons or photo-ejected electrons in dead layer

Nuclear Recoil Discrimination in CDMS II

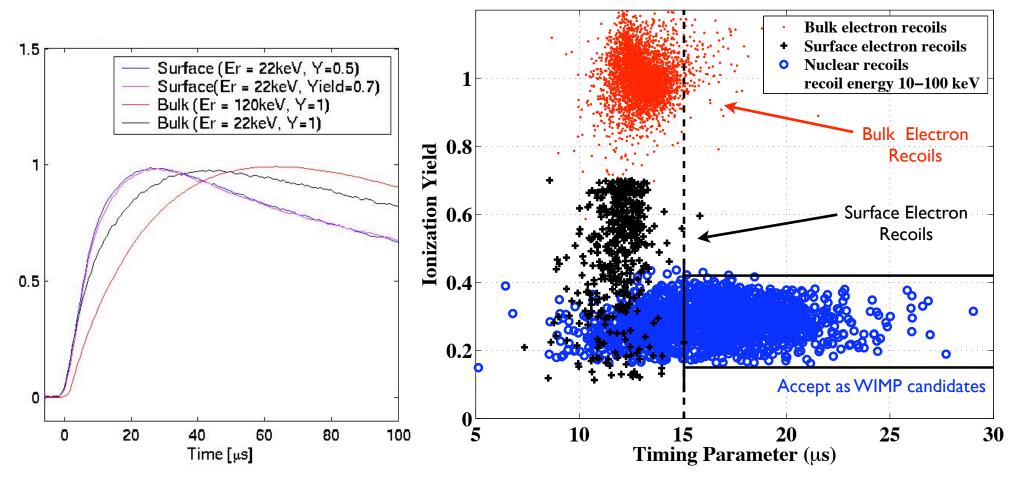

- Recoil energy
 - Phonon (acoustic vibrations, heat) measurements give full recoil energy
- Ionization yield
 - ionization/recoil energy strongly dependent on type of recoil (Lindhard)
- Excellent yield-based discrimination for photons
 - 2 x 10⁻⁴ misid
- Ionization dead layer:
 - low-energy electron singles (all surface ER): 0.2 misid
- 1.5 • bulk electron recoils (gamma source) • bulk nuclear recoils (neutron source) × surface electron recoils (NND selection) **[onization yield** 0.5 10 20 30 40 50 60 70 80 90 100
- 1.2×10^{-3} of photons are surface single scatters, 0.2 of those misid'd ($\Rightarrow 2 \times 10^{-4}$)
- But, phonon timing identifies surface events w/ < 0.006 misid, giving
 - Photons: < 2 x 10⁻⁶ misid

ZIP z Position Sensitivity

 Surface events produce faster phonon pulses (test sample: nearest neighbor low-yield doubles (NNDs))

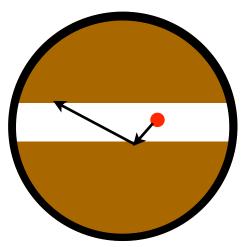


• overall misidentification: $< 2 \times 10^{-6}$ for photons, $< 2 \times 10^{-3}$ for electrons 1:1 scale: 3 in. x 1 cm, 1 mm separation

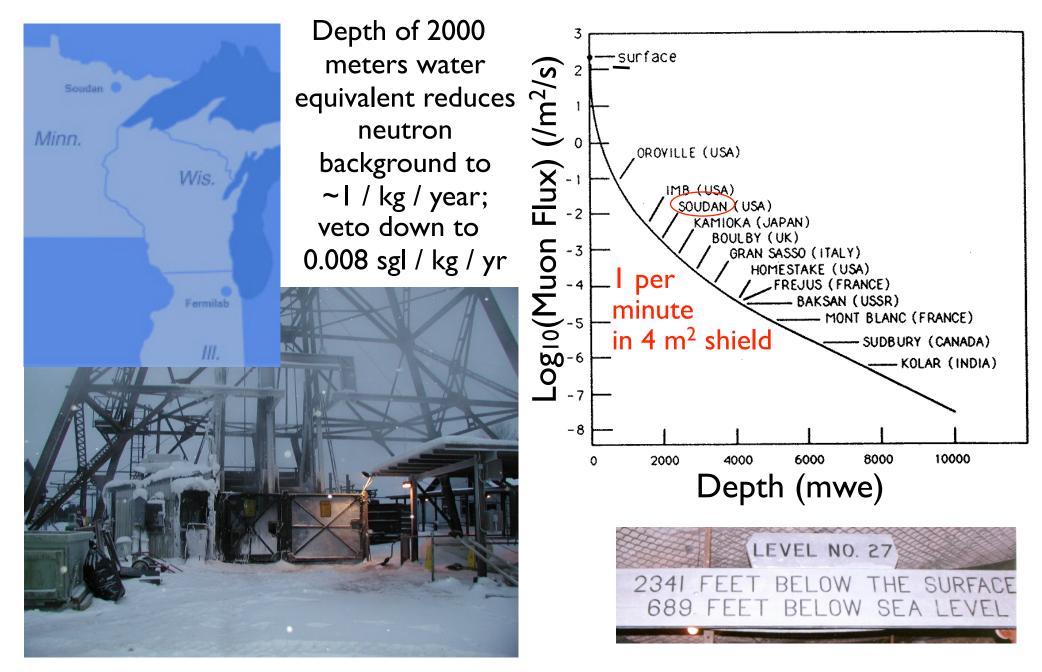


ZIP z Position Sensitivity

 Surface events produce faster phonon pulses (test sample: nearest neighbor low-yield doubles (NNDs))



• overall misidentification: $< 2 \times 10^{-6}$ for photons, $< 2 \times 10^{-3}$ for electrons 1:1 scale: 3 in. x 1 cm, 1 mm separation


ZIP z Position Sensitivity

- Surface events produce faster phonon pulses (test sample: nearest neighbor low-yield doubles (NNDs))
- overall misidentification: $< 2 \times 10^{-6}$ for photons, $< 2 \times 10^{-3}$ for electrons

2002–2008: CDMS II at Soudan

The CDMS II/SuperCDMS/GEODM Collaborations

<u>Brown University</u> M.Attisha, R. J. Gaitskell, J.-P.Thompson

<u>Caltech</u> Z. Ahmed, J. Filippini, S. R. Golwala, D. Moore, R.W. Ogburn

<u>Case Western Reserve University</u> D. S. Akerib, C. N. Bailey, D. R. Grant, R. Hennings-Yeomans, M.R. Dragowsky

Fermilab

D.A. Bauer, M.B. Crisler, F. DeJongh, J. Hall, D. Holmgren, L. Hsu, E. Ramberg, J. Yoo

<u>MIT</u> E. Figueroa-Feliciano, S. Hertel, K. McCarthy, S. Leman, P.Wikus

<u>NIST</u> K. Irwin

Queens University W. Rau, P. di Stefano

Santa Clara University B.A.Young

SLAC National Accelerator Lab E. do Couto e Silva, J. Weisand

Southern Methodist University J. Cooley SuperCDMS/GEODM <u>Stanford University</u> P.L. Brink, <u>B. Cabrera</u>, M. Pyle, S.Yellin

<u>St. Olaf College</u> A. Reisetter

<u>Syracuse University</u> R.W. Schnee, M. Kos, J. M. Kiveni

<u>Texas A&M</u> R. Mahapatra, M. Platt

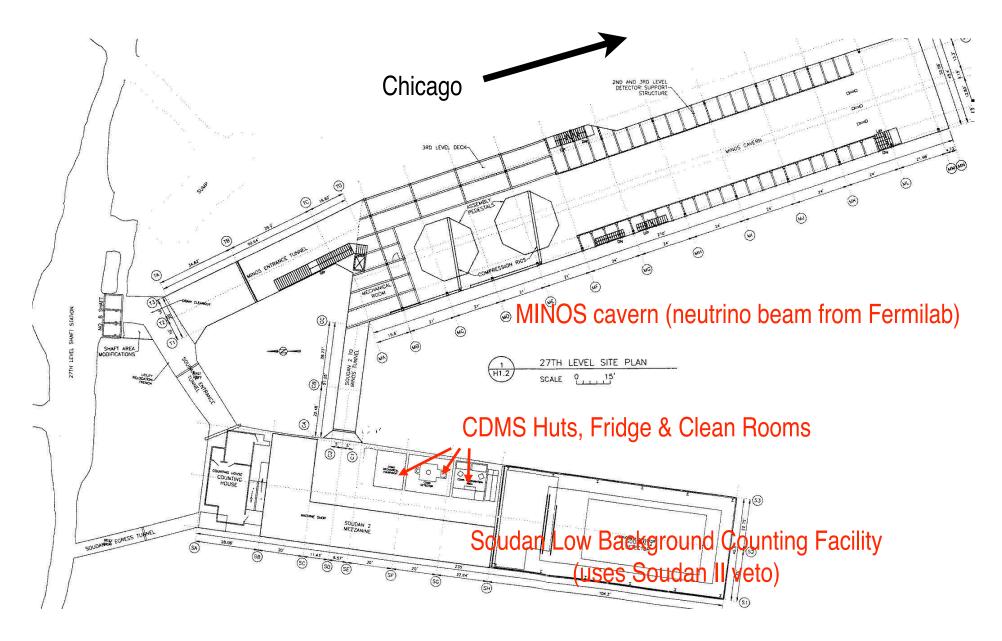
<u>University of California, Berkeley</u> M. Daal, N. Mirabolfathi, <mark>B. Sadoulet</mark>, D. Seitz, B. Serfass, K. Sundqvist

University of California, Santa Barbara R. Bunker, D. O. Caldwell, H. Nelson

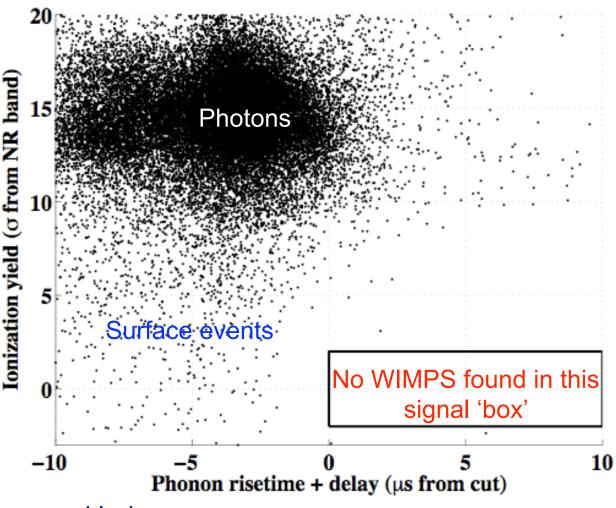
<u>University of Colorado at Denver</u> M. E. Huber, B. Hines

<u>University of Florida</u> T. Saab, D. Balakishiyeva

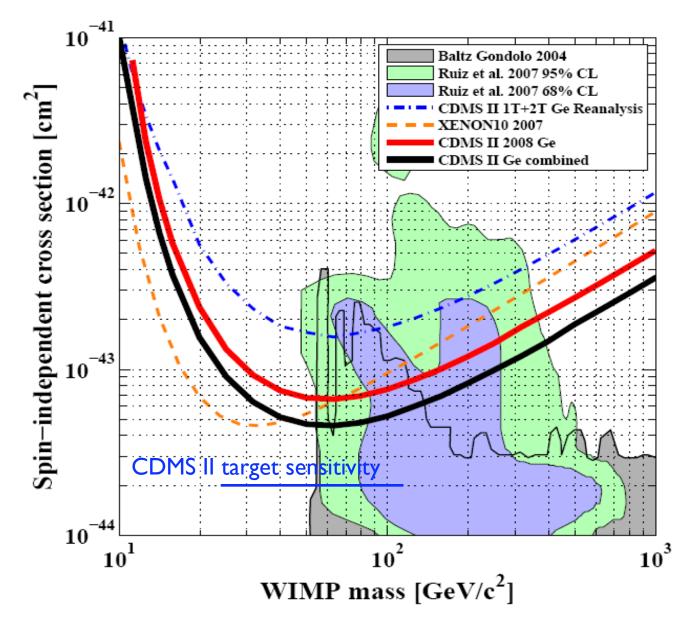
<u>University of Minnesota</u> P. Cushman, M. Fritts, V. Mandic, X. Qiu, O. Kamaev


<u>University of Zurich</u> S.Arrenberg, T. Bruch, L. Baudis, M. Tarka

CDMS Soudan Mine Installation

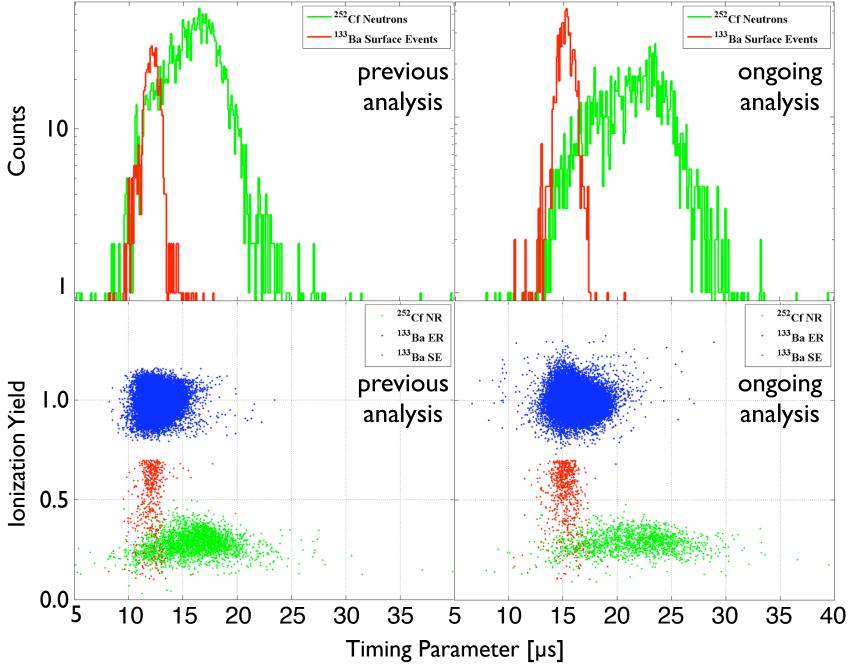

CDMS II 2008 Results

- 398 kg-d raw exposure
- Single-scatter events
- Estimated leakage of misidentified surface events determined from:
 - photon cal data
 - WIMP-search multiples
 - Cuts defined to obtain -10 -10
 ~0.5 leakage events: Photosoptimal balance of efficiency and leakage
- Expect 0.6 +0.5-0.3 (stat) +0.03-0.02 (syst) misidentified surface events

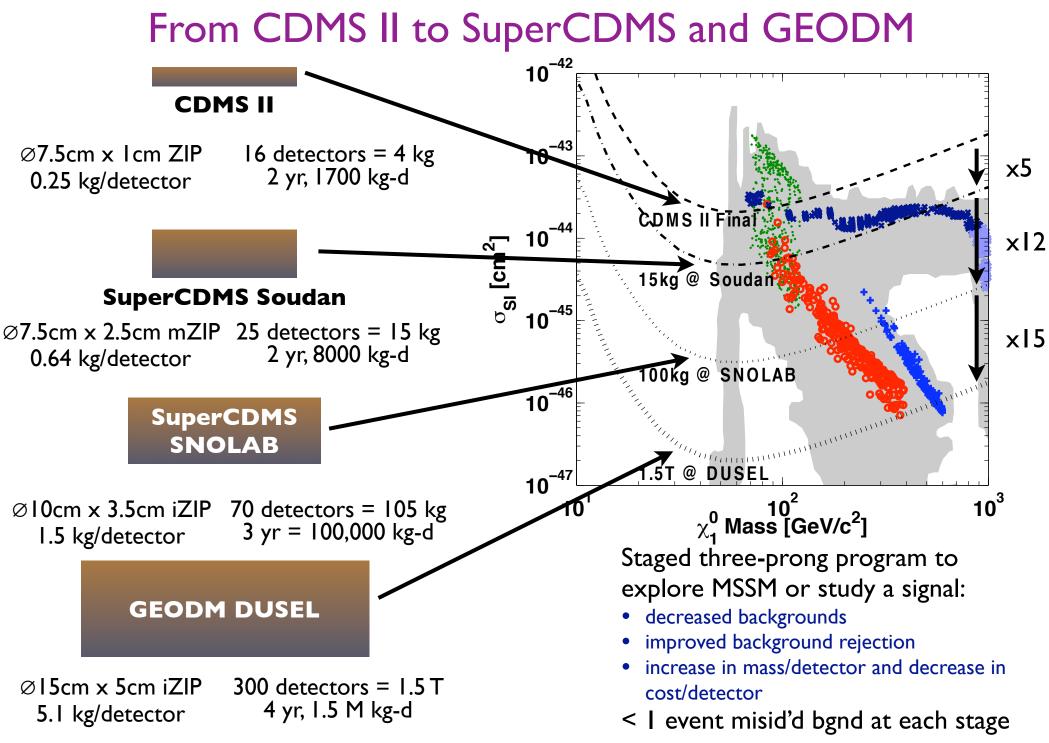

21

• Expect < 0.1 unvetoed single-scatter neutrons (conservative)

0 events observed



Spin-Independent Exclusion Limit



- Zero events observed
- Including reanalysis of prior data set, obtain best spin-independent limit for M > 40 GeV/c²; published in PRL, Filippini thesis
- 2.5X exposure in hand and being analyzed
 - many analysis improvements
 - should reach CDMS II target sensitivity of 2 x 10⁻⁴⁴ cm²

Ongoing Final CDMS II Analysis

SuperCDMS/GEODM

SuperCDMS/GEODM

Backgrounds and Background Rejection: Photons

- Consider together bulk scattering and surface events due to photon background
 - Moderate improvements in raw rates; already shown in CDMS I
 - Moderate reductions in surface area/volume ratio via increased mass/detector
 - More significant improvements in background rejection via improved detector design (see later)

improvement in background rejection via

better shielding/reduced contamination				better discrimination			
Stage	Rate [/kg/d]	Relative Rate	Sgl. Scatter x Misid. Prob.	Relative Misid. Prob	Misid. Rate [/kg/d]	Gain	σ [cm²]
CDMS II published	296	I	1.2 x 10 ⁻⁶	Ι	7.2×10^{-4}	I	4.5×10^{-44}
CDMS II final	296	I	5.9 x 10 ⁻⁷ (analysis)	0.5	3.6×10^{-4}	2	2.3 x 10 ⁻⁴⁴
SuperCDMS Soudan	296	I	I.9 x 10 ⁻⁷ (mZIP)	0.17	1.2×10^{-4}	6	5 x 10 ⁻⁴⁵
SuperCDMS SNOLAB	90 (CDMS I rate)	0.3 internal shield, better stock	< 1.7 x 10 ⁻⁸ (iZIP)	< 0.014	1.5×10^{-6}	> 250	3×10^{-46}
geodm Dusel	90 (CDMS I rate)	0.3 internal shield, better stock	< 1.2 x 10 ⁻¹¹ ? (iZIP)	< 10 ⁻⁵ ?	1.1 x 10 ⁻⁹ ?	> 3.3 x 10 ⁵ ?	2×10^{-47}

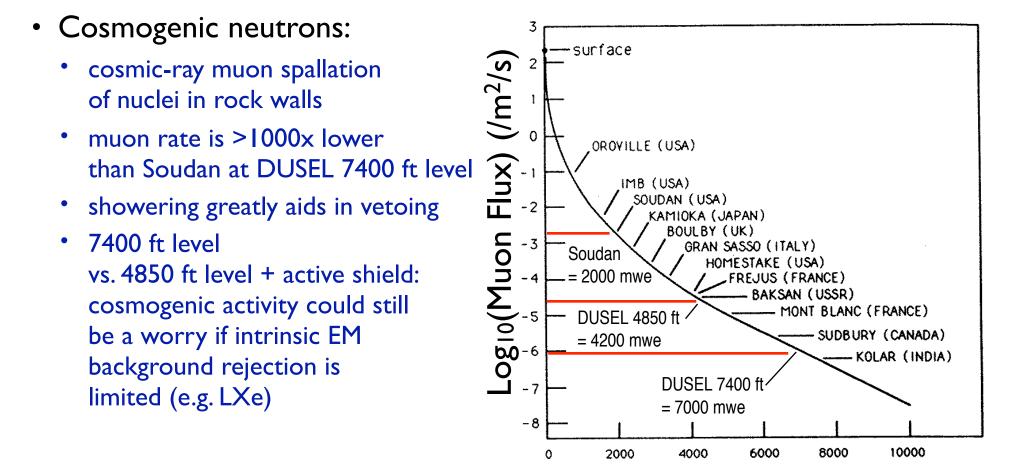
reduction of raw background rate via

Backgrounds and Background Rejection: Betas

- Surface events from low-energy beta decays
 - Significant reductions in raw rate/kg-d from reduced surface area/volume ratio and reduced radon daughter contamination
 - More significant improvements in background rejection via improved detector design (same as for photons; see later)

reduction of raw background rate via better shielding/reduced contamination				improvement in background rejection via better discrimination			
Stage	Rate [/kg/d]	Relative Rate	Sgl. Scatter x Misid. Prob.	Relative Misid. Prob	Misid. Rate [/kg/d]	Gain	σ _{goal} [cm²]
CDMS II published	3.4	I	1.0×10^{-4}	I	7.6 x 10 ⁻⁴	Ι	4.5×10^{-44}
CDMS II final	3.4	Ι	5.3×10^{-5} (analysis)	0.5	3.8×10^{-4}	2	2.3×10^{-44}
SuperCDMS Soudan	0.83 x0.6 ²¹⁰ Pb 2.5cm thickness	0.25	4.4 x 10 ⁻⁵ (mZIP)	0.42	7.9 x 10 ⁻⁵	10	5 x 10 ⁻⁴⁵
SuperCDMS SNOLAB	0.60 3.5cm thickness	0.18	< 5 x 10 ⁻⁶ (iZIP)	< 0.05	< 3 x 10 ⁻⁶	250	3×10^{-46}
GEODM DUSEL	0.41 5cm thickness	0.12	< 5 x 10 ⁻⁹ ? (iZIP)	< 5 x 10 ⁻⁵ ?	< 2 x 10 ⁻⁹ ?	> 3.7 x 10 ⁵ ?	2 x 10 ⁻⁴⁷

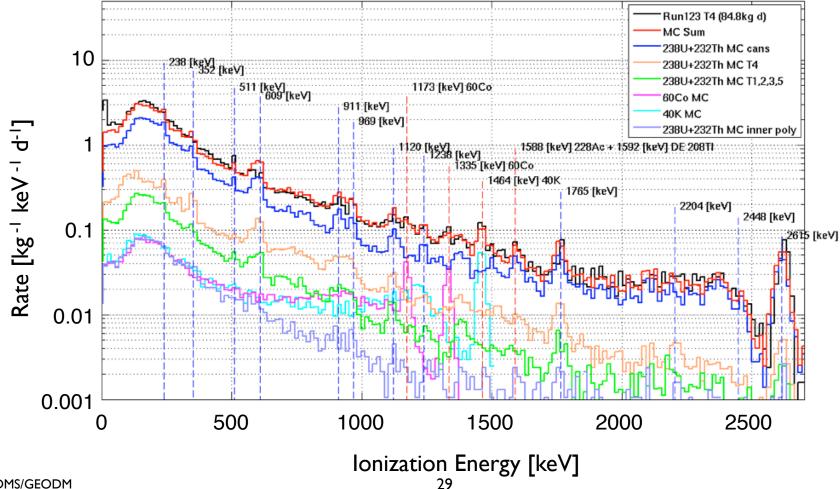
Backgrounds and Background Rejection: Neutrons


- Radiogenic neutrons: U/Th fission and (α,n)
 - Cryostat Cu:
 - 0.2 ppb U, 0.6 ppb Th currently, predicts 7.4×10^{-5} single n/kg/day
 - expected to be the limiting bgnd for SuperCDMS Soudan
 - Electroformed Cu should have 0.1 ppt U/Th
 - Pb in shield
 - 50 ppt upper limit on U/Th in existing shield
 - I ppt U/Th (Heusser upper limit) yields 6x10⁻⁶ single n/kg/day for SuperCDMS Soudan; ok for SNOLAB, need to improve upper limit by x15 for GEODM
 - Polyethylene:

Need

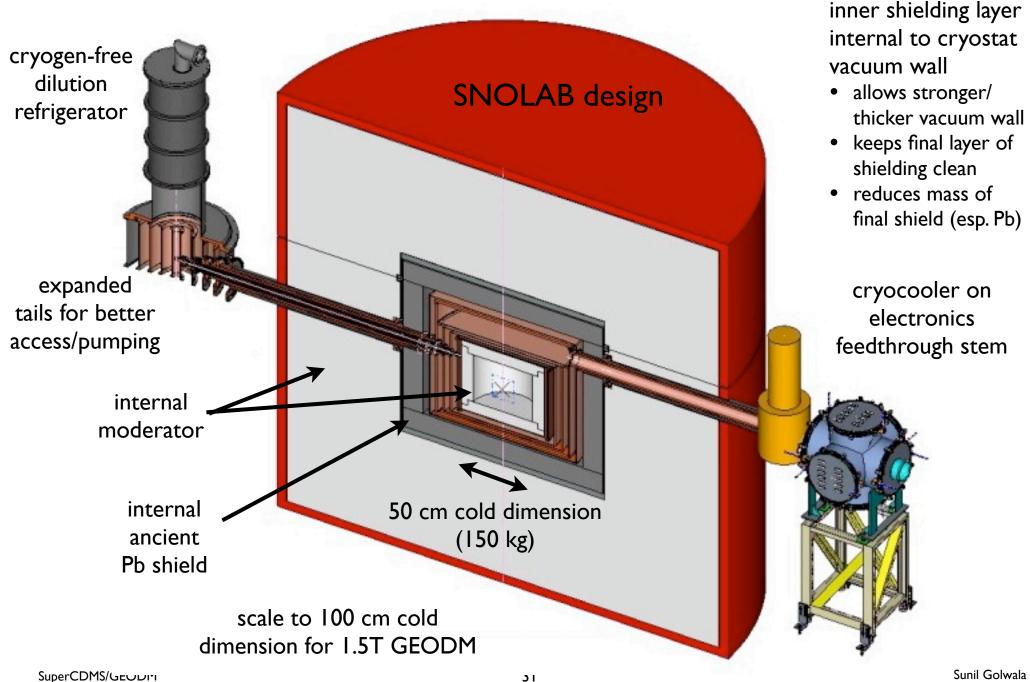
• 0.2 ppb U, 0.2 ppb Th upper limits on existing material yield 1.6×10^{-5} single n/kg/day

Need improved	Stage	Rate [/kg/d]	Relative Rate	Gain	σ [cm²]
poly (x3 and x45)	CDMS II published	1.2×10^{-4}	I	I	4.5×10^{-44}
or replace	CDMS II final	1.2×10^{-4}	I	I	2.3×10^{-44}
with water	SuperCDMS Soudan	1.2×10^{-4}	I	I	5 x 10 ⁻⁴⁵
	SuperCDMS SNOLAB	6.0×10^{-6}	0.05	20	3×10^{-46}
	GEODM DUSEL	4.0×10^{-7}	0.003	300	2×10^{-47}


Backgrounds and Background Rejection: Neutrons

Depth (mwe)

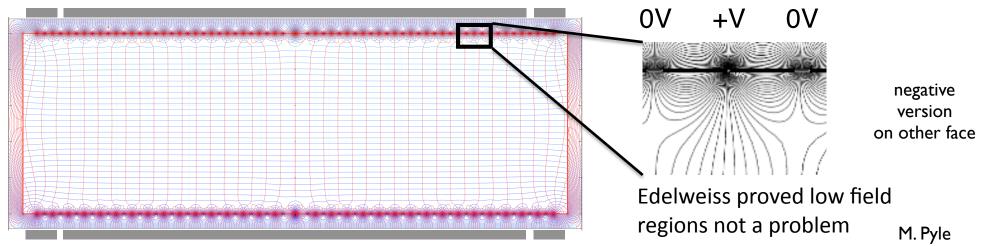
Reducing Backgrounds: Photons and Radiogenic Neutrons


- Fit spectrum for ²³⁸U/²³²Th/⁴⁰K/etc. contributions from various components
 - CDMS II = gamma screener. MC predicts spectrum for contaminants in various locations
 - Rate dominated by U/Th from cryostat/cold hardware Cu
 - x10 lower contributions from ⁴⁰K, ⁶⁰Co in Cu, U/Th in polyethylene
- Contamination levels typical for non-electroformed Cu

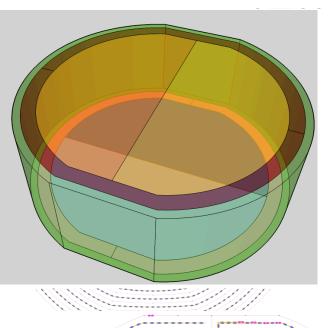
Reducing Backgrounds: Photons and Radiogenic Neutrons

- SNOLAB: need 70% reduction in photons, x20 in neutrons
 - cut photons using internal ancient Pb (done in CDMS I)
 - switch to electroformed Cu to reduce photons further, kills neutron contribution (x1000 better)
 - Pb: ok if U/Th in Pb is at Heusser upper limits (1 ppt)
 - need x3 on moderator: mildly cleaner polyethylene
- GEODM: need x15 more in neutrons
 - electroformed Cu should be ok
 - need to tighten upper limits on U/Th in Pb by x15
 - moderator: Need to work on this. No known vendor for lower U/Th poly (need to better understand how it is incorporated). Water is a reasonable alternative.

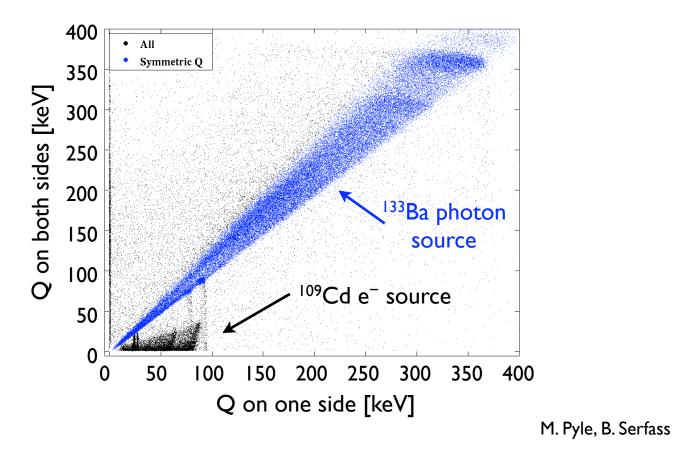
Reducing Backgrounds: SNOLAB/GEODM Cryostat/Shield


Improving Background Rejection

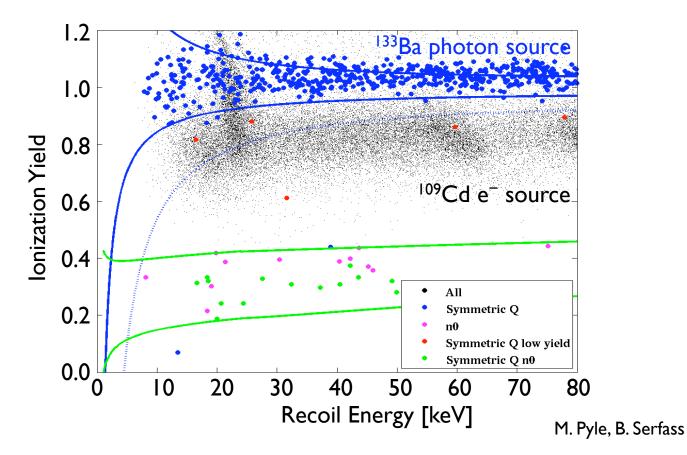
- CDMS II History:
 - ~0.5 expected misid'd bgnd in each analysis to date over x10 increase in exposure by improved analysis techniques with existing detectors


Year	Exposure (raw Ge)	Limit alone	Limit incl. previous
2004	53 kg-d	4.0 x 10 ⁻⁴³ cm ²	4.0 x 10 ⁻⁴³ cm ²
2005	112 kg-d	2.5 x 10 ⁻⁴³ cm ²	1.6 x 10 ⁻⁴³ cm ²
2008	398 kg-d	6.6 x 10 ⁻⁴⁴ cm ²	4.6 x 10 ⁻⁴⁴ cm ²
2009	~1100 kg-d	~2.6 x 10 ⁻⁴⁴ Cm ²	~2.3 x 10 ⁻⁴⁴ Cm ²

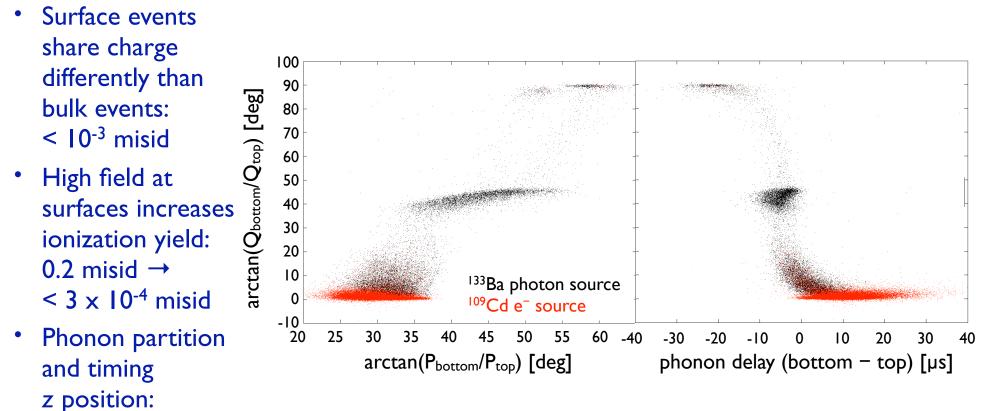
- SuperCDMS Soudan:
 - Only need to obtain surface event rates (per unit area) comparable to best CDMS II detectors and rejection comparable to CDMS II final analysis (x2 better than published)
 - ²¹⁰Po alpha rate already checked → ²¹⁰Pb ok! Explicit demonstration of surface event rate/rejection with SuperTower 1 in coming months.


 Interdigitated ZIP (iZIP) design meets needs for SuperCDMS SNOLAB and GEODM

- Interleaved ionization electrodes cause ionization to partition differently for surface and bulk events
- High field near surface increases ionization yield for surface events
- Top/bottom phonon sensors (ground rails) provide simpler, more direct z information



- Interdigitated ZIP (iZIP) design appears to meet needs of SuperCDMS SNOLAB and GEODM
 - Surface events share charge differently than bulk events:
 < 10⁻³ misid
 - High field at surfaces increases ionization yield: 0.2 misid → < 3 x 10⁻⁴ misid
 - Phonon partition and timing z position:
 < 10⁻³ misid


- All measurements limited by neutron background in surface test facilities
- Ionization yield and Q/P asymmetry likely uncorrelated; if true, then overall misid $10^{-4} \rightarrow < 3 \times 10^{-7}$, far better than needed for GEODM

- Interdigitated ZIP (iZIP) design appears to meet needs of SuperCDMS SNOLAB and GEODM
 - Surface events share charge differently than bulk events:
 < 10⁻³ misid
 - High field at surfaces increases ionization yield: 0.2 misid → < 3 x 10⁻⁴ misid
 - Phonon partition and timing z position:
 < 10⁻³ misid

- All measurements limited by neutron background in surface test facilities
- Ionization yield and Q/P asymmetry likely uncorrelated; if true, then overall misid $10^{-4} \rightarrow < 3 \times 10^{-7}$, far better than needed for GEODM

 Interdigitated ZIP (iZIP) design appears to meet needs of SuperCDMS SNOLAB and GEODM

M. Pyle, B. Serfass

- All measurements limited by neutron background in surface test facilities
- Ionization yield and Q/P asymmetry likely uncorrelated; if true, then overall misid $10^{-4} \rightarrow < 3 \times 10^{-7}$, far better than needed for GEODM

 $< 10^{-3}$ misid

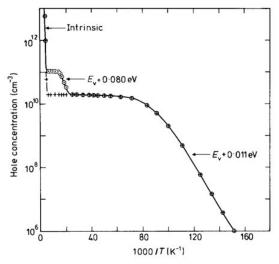


Figure 1. Hole concentration against reciprocal temperature 1/T of a dislocated and an undislocated Ge sample cut from the same crystal slice. The net impurity concentration of shallow acceptors and donors is equal for both samples. The $E_V + 0.08$ eV acceptor only appears in the dislocation-free piece; its concentration depends on the annealing temperature. \odot dislocation free; + dislocated.

acceptor. Figure 1 shows the hole concentration against 1/T for two samples cut from a partially dislocated slice of a crystal. The chemical background concentration due to shallow acceptors and donors, $N_{\rm A}-N_{\rm D}$, is constant throughout the slice. In the dislocation-free piece one observes a defect with an acceptor level at $E_{\rm v}$ + 0.08 eV de-ionizing around 65 K. Another major difference between dislocation-free and dislocated regions appears upon etching with preferential etchants. Figure 2 shows the (100) surface of a polish-etched Ge slice after a 2 min etch in HF : HNO₃: Cu(NO₃)₂ 10% (2:1:1). Hemi-

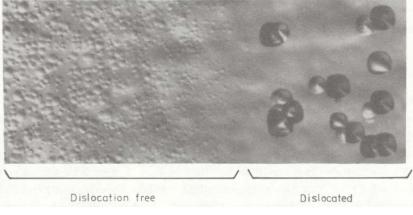


Figure 2. Photograph of a partially dislocated (100) surface of a hydrogen-grown Ge crystal. The large etch pits with four-fold symmetry in the right half of the picture are due to dislocations. The hemispherical pits in the left half of the picture are attributed to vacancy and hydrogen complexes.

ne: Larger Substrates

gnds and in cost/time per kg tec)

Inst. Phys. Conf. Ser. No. 31 © 1977: Chapter 3

309

Divacancy-hydrogen complexes in dislocation-free high-purity germanium [†]

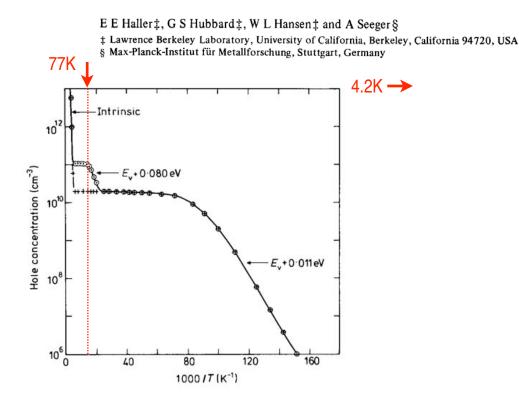
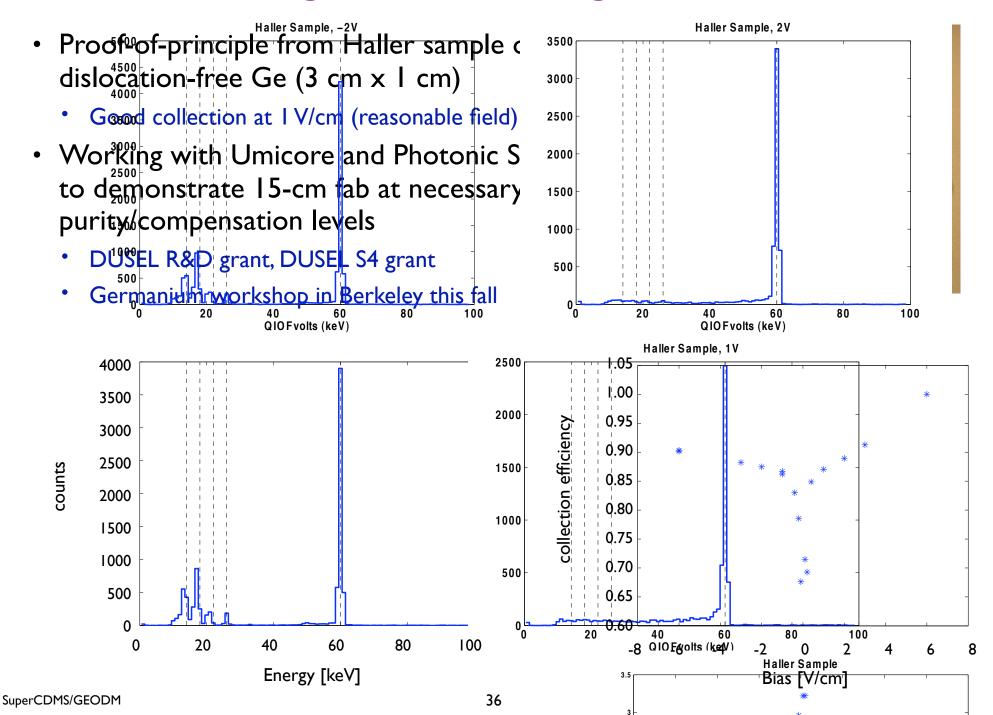
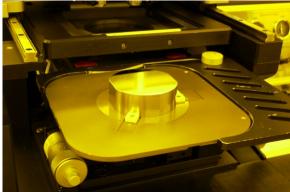
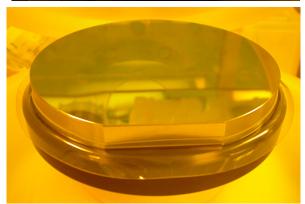



Figure 1. Hole concentration against reciprocal temperature 1/T of a dislocated and an undislocated Ge sample cut from the same crystal slice. The net impurity concentration of shallow acceptors and donors is equal for both samples. The $E_v + 0.08 \text{ eV}$ acceptor only appears in the dislocation-free piece; its concentration depends on the annealing temperature. \odot dislocation free; + dislocated.

3


Reducing Cost/Time: Larger Substrates



Reducing Cost/Time: Demonstrated Fab Improvements

- Film deposition control
 - CDMS II used shared sputtering machine;
 → poor tungsten Tc control, much effort to monitor
 - Have taken full possession of sputtering machine and installed fresh tungsten target
 - Machine already upgraded to 2.5 cm thickness and producing them regularly
- Photolithographic mask aligner/exposer
 - Former stepper/aligner (Karl Suss Ultratech): difficult to use and defect-prone
 - New EV-620 leaves smiles on the faces of users (literally). Has been upgraded to accept 15-cm diameter x 5-cm thickness.
 - New machine provides for full-field masks (more flexibility in sensor design)
- Demonstrated photoresist spinning on Ti blanks
- Already increased fab rate, reduced fab cost
- (DUSEL R&D grant, KIPAC, DUSEL S4 grant)

Reducing Cost/Time: Proposed Fab Improvements

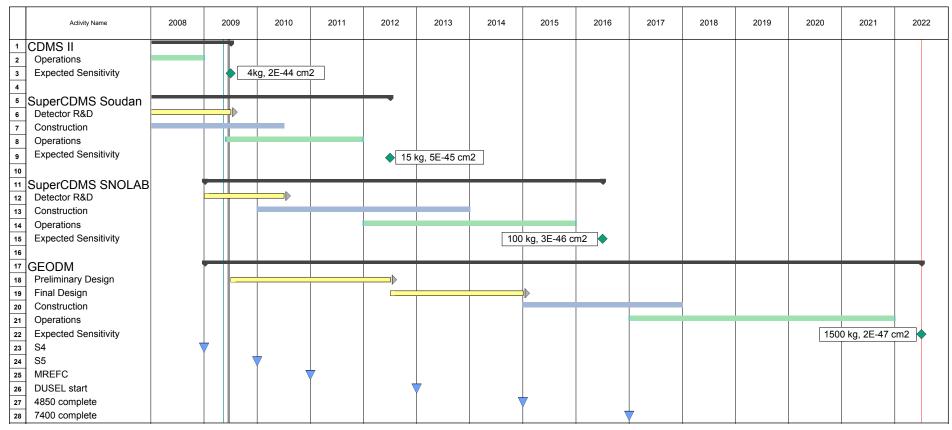
SuperCDMS SNOLAB

- I0-cm substrates can be processed in existing Stanford facility
- GEODM
 - Develop fab line at TAMU (Mahapatra):
 - new automated sputter cluster donated by Seagate; available for dedicated use
 - clean room donated by Dallas Semiconductor
 - Already handles 15-cm diameter, needs to be upgraded to 5-cm thickness (\$50k)
 - Purchase automated photoresist coater/baker (\$200k)
 - 40% of fab time goes into PR coat/bake!
 - New SLAC group (do Couto e Silva)
 - managed Fermi GST LAT fabrication
 - looking to establish fab line at SLAC, possibly in time for SNOLAB
- Above will allow almost full automation and 24/7 fabrication: fab cost/time should not be a limiting factor

Reducing Cost/Time:Test Improvements

- Fab improvements \rightarrow test improvements
 - CDMS II:
 - detectors required 3 cryogenic tests to obtain full functionality (surgery to repair fab errors, T_c test and implantation to tune)
 - once detector functional, success rate for getting into experiment was 80%
 - SuperCDMS:
 - tungsten film T_c under good control, no surgery required:
 I cryogenic test required to obtain fully functional detector
 - success rate for completed substrates 80% so far, should improve
- Test speedup/automation
 - Much testing for CDMS II was fully manual
 - Will develop cryogen-free automated test setup to measure T_c, demonstrate DC functionality
 - 3 new test facilities now online or coming online soon (UF, UMN, Queen's), two are cryogen-free, but losing CWRU
 - SuperTower I already shows substantial improvement over CDMS II

Reducing Cost/Time: Doing the Numbers

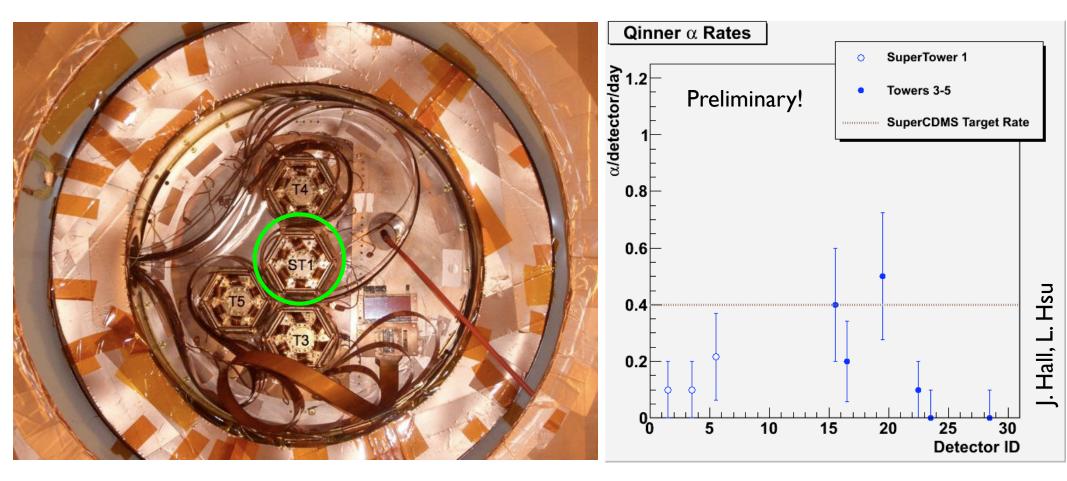

- How do you cost things?
 - "development" costing
 - add up costs under the "Fabrication/Test" work breakdown structure category; divide by number of detectors
 - "production" costing
 - add up at the actual time spent and related expenses
- Super Tower I + 2 (10 Ge detectors)
 - "development":
 - project has run almost 2 yrs and almost have 10 detectors ready
 - (5 done, 5 fab'd and to be tested in next 2 mo)
 - \rightarrow 0.5 detectors/mo, \$500k/detector
 - "production":
 - were in development mode through 10/2008; look at 11/2008-3/2009, once fab process has been set
 → 1.25 detectors/mo, \$160k/detector
 - 3/4 of time is test: need to speed up/automate testing
 - In "production" costing, we have met SuperCDMS Soudan goal

Reducing Cost/Time: Doing the Numbers

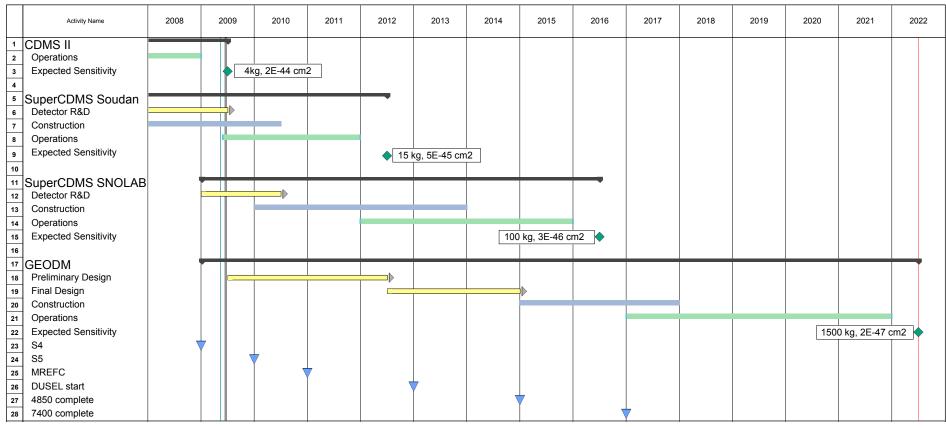
 Costs for fab and test; product = detector ready for installation in experiment Has driven experiment cost in past.

	CDMS II	SuperCDMS Soudan	SuperCDMS SNOLAB	GEODM
Cost basis	actual	approved	to be proposed	
total mass	4 kg	16 kg	105 kg	1500 kg
# detectors, mass	16 x 0.25 kg (+ 14 x 100g Si)	25 x 0.64 kg	70 x 1.5 kg	300 x 5.1 kg
cost/detector	\$200K-\$300K	\$225k	\$225k	\$120k
rate [det/mo]	0.5-0.75/mo	1/mo	2/mo	8/mo
cost/kg	\$800k-1200k	\$350k	\$150k	\$24k
rate [kg/mo]	0.1-0.2 kg/mo	0.64 kg/mo	3 kg/mo	40 kg/mo
total detector cost	\$4.8M (+ \$4.2M)	\$5.6M	\$16M	\$36M
total detector time	2.7 yrs (+ 2.3 yrs)	2 yrs	3 yr	3 yrs

Status/Schedule



- CDMS II:
 - data taking complete
 - final analysis proceeding, out this fall
- SuperCDMS Soudan:
 - First 3.2 kg of detectors installed in Soudan (along with existing 2.4 kg), second 3.2 kg of detectors fab'd and awaiting surface testing

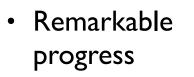

• Approved in Aug 2008 to fab remaining 9.6 kg of detectors and run for 2 yrs SuperCDMS/GEODM 42

SuperTower I Running at Soudan!

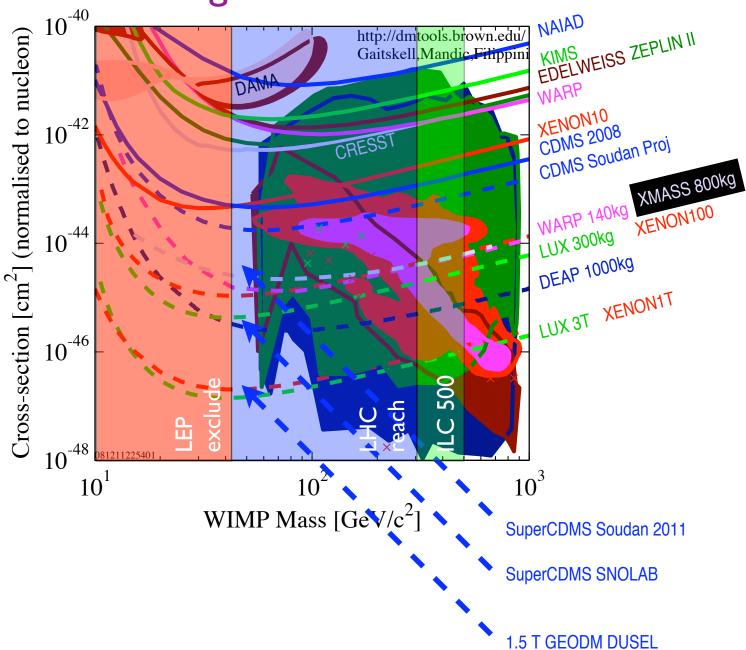
- STI installed April 16, 2009, cold June 4, and in stable running by Aug I
- Best 3/5 of CDMS II also remains in place: total 4 kg \rightarrow 5.6 kg
- ²¹⁰Po α rate verified; surface-event rates and rejection need more data
- will run STI alone until ST2-5 ready

Status/Schedule

• SuperCDMS SNOLAB:


- R&D funding likely in FY10, proposal to be submitted in FY10 for FY11 start
- Cryostat/shield and electronics design proceeding at FNAL under base funding; critical to get release of funds to order long-lead-time dilution refrigerator ASAP
- SNOLAB is enthusiastic, space has been set aside, initial test setup in FY10
- Overlap with DUSEL provides prototyping, robustness against DUSEL delays: SNOLAB reach not limited by site (or, hopefully, by cryostat and shield)

Status/Schedule


DUSEL GEODM

- Conceptual design and initial cost estimate (\$50M construction) in hand
- DUSEL S4 (engineering study phase) proposal successful!
 \$2.1M proposed over 3 yrs, \$1.3M funded
 - Goal: arrive at "preliminary design" of experiment by end of funding in 2012, with input to DUSEL preliminary design in late 2010 (DUSEL PDR: Dec 2010).
 - Pursuing parallel DOE funding
 - FNAL: situation looks tight right now; continued base funding ok, large increment unlikely
 - SLAC: enthusiasm from Particle Physics/Astro Director Eduardo do Couto e Silva (Fermi GLAST) has just joined with view toward large detector fab and simulations, \$500k/yr LDRD just submitted
 - LBNL: enthusiasm from Siegrist, funding situation looks difficult (no base engineering budget)
 - University: Have asked whether we can submit a "companion proposal" to S4, no response yet, but hopefully enthusiasm from the labs will encourage Kovar.
 - PASAG report will hopefully help
- Overlap with SNOLAB provides prototyping, robustness against DUSEL delays

Exciting Times!

- 2 orders of mag in ~10 yrs
- Predictions for larger gains in next decade
- LHC turn-on soon!
 - perhaps a prediction based on detecting SUSY; perhaps a confirmation of a DD signal

Conclusions

- CDMS II reaching successful completion
- SuperCDMS Soudan ramping up
 - STI installed and ²¹⁰Po verified, ST2 to be tested
 - approved for ST3/4/5 + science running
 - reach: 5 x 10⁻⁴⁵ cm²
- SuperCDMS SNOLAB to be proposed soon
 - 105 kg, 3 x 10⁻⁴⁶ cm²
 - new SLAC involvement
- GEODM
 - conceptual design in place
 - preliminary design beginning