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Galaxy Cluster Primer
• Most massive collapsed objects in universe
• Characteristics:

• R ~ 1-3 Mpc (1025 cm), few arcmin, 
collapsed from ~10 Mpc region

• M ~ 1014 M⊙ to few x 1015 M⊙, mostly dark matter

• Hot baryonic plasma ~ 15-20% of mass
• T ~ 108 K = few keV
• LX = 1043-1045 erg/sec
• density = 0.001- 0.1/cm3

• sound crossing time ~ 0.5 Gyr << age 
→ close to hydrostatic equilibrium

• gas somewhere between isothermal (P ∝ ρ) 
and adiabatic (P ∝ ρ5/3)

• thermal conduction substantial but not perfect
• metallicity ~ 1/3-1/2 solar

• 10s to 100s of galaxies, ~2-3% of mass
• magnetic field ~ 1 µG
• Most formed between z = 1 and today

• Observable in O/IR via detection of member galaxies

• Lensing of background galaxies in O/IR maps dark matter

8

than previous studies, thus enabling a more accurate determination
of the Hubble constant.

2. OBSERVATIONS OF GALAXY CLUSTERS

2.1. Interferometric Sunyaev-Zel’dovich Effect Data

Interferometric radio observations of the 38 clusters in Table 1
were performed at the Berkeley-Illinois-Maryland Association
observatory (BIMA) and at the Owens Valley Radio Observatory
(OVRO). The arrays were equipped with 26Y36 GHz receivers
to obtain maps of the SZE toward the clusters (Carlstrom et al.
1996, 2000; Reese et al. 2000). These frequencies are on the
Rayleigh-Jeans end of the microwave spectrum, and the scattering
with cluster electrons causes an intensity decrease that, in terms
of brightness temperature, corresponds to a change in TCMB of
order !1 mK.

Most of the OVRO and BIMA telescopes were placed in a
compact configuration to maximize the sensitivity on angular
scales subtended by distant clusters (typically "10), and a few
telescopes were placed at longer baselines for simultaneous point-
source imaging (Reese et al. 2002). The SZE data consist of the
position in the Fourier domain (u-v plane) and the visibilities—
the real and imaginary Fourier component pairs as functions of
u and v, which are the Fourier conjugate variables to right as-
cension and declination. The effective resolution of the inter-
ferometer, the synthesized beam, depends on the u-v coverage
and is therefore a function of the array configuration and source
position. A typical size for the synthesized beam of our obser-
vations is"10, as shown in Figure 1. The SZE data were reduced
using the MIRIAD (Sault et al. 1995) and MMA (Scoville et al.
1993) software packages, and images were made with DIFMAP
(Pearson et al. 1994) software. Absolute flux calibration was

Fig. 1.—Left: Chandra images of the X-ray surface brightness in the 0.7Y7 keV band in units of counts per pixel (1B97 pixels) for selected clusters. Overlaid are the
SZE decrement contours, with contour levels (+1,!1,!2,!3,!4, : : :) times the rms noise in each image; the FWHM of the SZE synthesized beam (effective point-
spread function) is shown in the lower left corner. The X-ray images were smoothed with a ! ¼ 200 Gaussian kernel.Center: Radial profile of the background-subtracted
X-ray surface brightness. The solid line is the best-fit model obtained with the parameters of Table 2. Right: Radial profiles of theChandra temperatures. The solid line is
the best-fit hydrostatic equilibrium model with the parameters of Table 2.

COSMIC DISTANCE SCALE FROM SZ EFFECT AND CHANDRA 27

Abell 1689 (Hubble, Benitez et al)

image: Chandra X-ray
contours: BIMA/OVRO SZ

Bonamente et al
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Galaxy Cluster Primer

• Intracluster medium “emission” mechanisms:
• X-ray emission from thermal bremsstrahlung

• Thermal Sunyaev-Zeldovich (SZ) effect: 
Compton scattering of CMB photons
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for the 38 clusters lie within the envelope of the 21 clusters ob-
served by BeppoSAX (see Figs. 3 and 4 and Table 2 of De Grandi
& Molendi 2002). The radial temperature profile data for all
clusters, including the temperature, the background-subtracted
counts, and the !2, are reported in Appendix C (Table 7). Metal
abundances of the hot cluster plasma have a marginal effect on
the X-ray cooling function (see x 3). We assume the De Grandi
et al. (2004) abundance profile in our analysis, which is consis-
tent with our measured abundances.

3. MEASURING DISTANCES WITH X-RAY
AND SUNYAEV-ZEL’DOVICH EFFECT DATA

3.1. The Hydrostatic Equilibrium Model

To determine the distance to a cluster, we must first construct
a realistic model for the cluster gas distribution. At the center
of clusters the density may be high enough that the radiative
cooling timescale is less than the cluster’s age, leading to a re-
duction in temperature and an increase in central density. This
increases the central X-ray emissivity in theChandra passband,
as shown in Figure 1 for the clusters RXJ 1347.5!1145 andAbell
1835. At large radii, the density of the gas is sufficiently low that
X-ray emission can be sustained for cosmological periods with-
out significant cooling. Cool core clusters effectively exhibit
two components: a centrally concentrated gas peak and a broad,
shallower distribution of the gas. This phenomenon motivates
the modeling of the gas density with a function of the form:

ne(r) ¼ ne0 f 1þ r 2

r 2c1

! "!3"=2

þ (1! f ) 1þ r 2

r 2c2

! "!3"=2
" #

: ð1Þ

This shape generalizes the single "-model profile, introduced
by Cavaliere & Fusco-Femiano (1976) and commonly used to
fit X-ray surface brightness profiles, to a double "-model of the
density that has the freedom of following both the central spike
in density and the gentler outer distribution. A double "-model
of the surface brightness was first used by Mohr et al. (1999) to
fit X-ray data of galaxy clusters; the density model of equation (1)
was further developed by LaRoque (2005). The quantity ne0 is
the central density, f governs the fractional contributions of the
narrow and broad components (0& f &1), rc1 and rc2 are the
two core radii that describe the shape of the inner and outer por-
tions of the density distribution, respectively, and" determines the
slope at large radii (the same " is used for both the central and
outer distribution in order to reduce the total number of degrees of
freedom).

The X-ray surface brightness is related to the gas density as

SX¼
1

4#(1þ z)4

Z
n2e!ee dl; ð2Þ

where z is the cluster redshift, ne is the electron density of the
plasma (eq. [1]), !ee is the X-ray cooling function, and the in-
tegration is performed along the line of sight l. We calculate!ee

as a function of plasma temperature and energy in the rest frame
of the cluster, including contributions from relativistic electron-ion
thermal bremsstrahlung, electron-electron thermal bremsstrahlung,
recombination, and two-photon processes; the cooling function
is then redshifted to the detector frame, convolved with the tele-
scope and detector response, and integrated over the 0.7Y7 keV
Chandra bandpass, following the method described in Reese
et al. (2000). The calculation of!ee requires a temperature profile

in order to perform the integration, which we determine from our
Chandra data (Fig. 2). The appropriate response for each image
was generated from CIAO.

The SZE decrement is proportional to the integrated gas pres-
sure as

"TCMB¼ f(x;Te)TCMB

Z
$Tne

kBTe
mec2

dl; ð3Þ

where f(x;Te) is the frequency dependence of the SZE (x ¼
h%/kBTCMB and f(x;Te) ’ !2 at our observing frequency of
30 GHz), TCMB ¼ 2:728 K (Fixsen et al. 1996), $T is the Thomson
cross section, kB is the Boltzmann constant, c is the speed of
light in vacuum, me is the electron mass, Te is the electron tem-
perature, and the integration is along the line of sight.

Historically, the cluster distance has been solved for directly
by taking advantage of the different density dependences of the
X-ray emission and SZE decrement (e.g., Hughes et al. 1991;
Reese et al. 2002; Bonamente et al. 2004):

SX /
Z

n2e!ee dl ¼
Z

n2e!eeDA d&;

"TCMB /
Z

neTe dl ¼
Z

neTeDA d&: ð4Þ

The details of the plasma modeling, such as the numerical inte-
gration of the density profile, are included in the proportionality
constants of equation (4). The cluster angular diameter distance
DA ' dl/d&, where & is the line-of-sight angular size, can be in-
ferred with a joint analysis of SZE and X-ray data by assuming a
cluster geometry to relate the measured angular size in the plane
of the sky to that along the line of sight. For our adopted spherical
geometry, these two sizes are equal.

Our model includes the distribution of dark matter in clusters.
The baryonic matter reaches hydrostatic equilibrium in the po-
tential well defined by the baryonic and dark matter components,
on a timescale that is shorter than the cluster’s age (Sarazin 1988).
Under spherical symmetry, this results in the condition

dP

dr
¼ !'g

d(

dr
; ð5Þ

where P is the gas pressure, 'g is the gas density, and ( ¼
!GM (r)/r is the gravitational potential due to both dark matter
and the plasma. Using the ideal gas equation of state for the
diffuse cluster plasma, P¼ 'gkBT /)mp, where ) is the mean mo-
lecular weight and mp is the proton mass, one obtains a rela-
tionship between the cluster temperature and the cluster mass
distribution:

dT

dr
¼ ! )mp

kB

d(

dr
þ T

'g

d'g
dr

! "
¼! )mp

kB

GM

r 2
þ T

'g

d'g
dr

! "
:

ð6Þ

We combine these hydrostatic equilibrium equations with a
dark matter density distribution from Navarro et al. (1997):

'DM(r)¼ N
1

(r=rs)(1þ r=rs)
2

# $
; ð7Þ

where N is a density normalization constant and rs is a scale
radius. These model equations are combined with the X-ray and
SZE data using a MCMC method, described in x 3.2.
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Λee = cooling function ∝ Te1/2

σT = Thomson cross-section
Note the different 
dependences on 

ne and Te !

Observing Clusters with SZE and X-ray

• X-ray observations have been used to
study the ICM

– X-ray signal ∝ n2
eT

1/2
e

(1+z)4

– X-ray spectra needed to solve for Te

– difficult to study high-z clusters because of
1/(1 + z)4 redshift dependence of signal

– difficult to study outer regions of cluster
because of n2

e dependence of signal

• combine X-ray and SZE
– SZE ∝ neTe

– break degeneracy between ne and Te

– reduce amount of X-ray data needed →

allow studies at higher z and larger radii

Texas in Vancouver December 8, 2008 Jack Sayers
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Self-Similar, Universal Cluster Model

• Assume gravity dominates, not baryonic physics
• A spherical overdensity breaks away from expansion, collapses, and virializes;

density at virialization is cosmology-dependent ∆υ ≈ 180.  Defines virial radius 
(“edge of cluster”), total mass Mtot

• Assume isothermality of gas (virialization to logical extreme) in non-singular 
isothermal sphere with gas temperature related to galaxy velocities

• Require hydrostatic equilibrium (gas pressure provides support against gravity): 
relates total mass sourcing gravity to gas temperature and density profile
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2003), and all cluster X-ray properties are derived using data from
the Chandra X-ray Observatory. Finally, our Chandra observa-
tions have an order of magnitude better spatial resolution than
the X-ray data used in previous studies, which greatly improves
our ability to identify and exclude compact foreground sources
that are superimposed on the cluster X-ray emission.

Throughout the paper, we assume a !CDM cosmology with
"M ¼ 0:3, "! ¼ 0:7, and h ¼ 0:7, where h is defined such that
H0 ¼ 100 h km s"1 Mpc"1. All uncertainties are at the 68.3%
confidence level.

2. THEORY OF CLUSTER SCALING RELATIONS

2.1. The Virial Radius and r2500

In order to establish relationships between mass, SZE flux, and
other cluster properties, one needs to define a radius out to which
all quantities will be calculated. This radius should be physically
motivated, reachable with the current X-ray and SZE observations,
and equivalent for clusters of different redshift. One candidate is
the virial radius. In a Friedman-Robertson-Walker universe, an
unperturbed spherical region expands indefinitely, while a per-
turbed overdense region (the seed of a future cluster) eventually
recollapses. When the overdense region collapses under the effect
of its own gravity, it is assumed to reach virial equilibrium when
the radius is half of that at maximum expansion (Peebles 1980;
Lacey & Cole 1993). The ratio of the mean cluster density to the
background density at the time of virialization is#v ¼ 18!2 for
a universe with critical matter density ("M ¼ 1). For a different
cosmology with "k ¼ 0, Bryan & Norman (1998) showed that
#v ’ 18!2 þ 82x" 39x2, where x ¼ "M0(1þ z)3 /E2(z) and
E2(z) ¼ "M0(1þ z)3 þ "! þ "k0(1þ z)2, as found from a fit to
numerical simulations (Lacey & Cole 1993).

With this characterization of the mean cluster density at time
of virialization, the virial radius can be determined as the radius
within which the average density of the cluster is #v times the
critical density, via

4

3
!"c(z)#v(z)r

3
vir ¼ Mtot r# v(z)

h i
; ð1Þ

in which both "c(z) and#v(z) are cosmology dependent, and the
critical density "c(z) is defined as

"c(z) ¼
3H 2

0 E(z)
2

8!G
: ð2Þ

Unfortunately, the virial radius is usually unreachable with cur-
rent X-ray and SZE measurements, and one is forced to perform
measurements out to a smaller radius. Such a radius (r#) is char-
acterized by the density contrast parameter# in place of #v(z)
in equation (1), and it corresponds to a higher average density,
4/3ð Þ!"c(z)#r 3# ¼Mtot(r#). We choose a contrast parameter# ¼
2500, corresponding to an average density of 2500 times the
critical density at the cluster’s redshift. This choice is motivated
by the fact that this is the radius typically reachable with our SZE
and X-ray data without any extrapolation of the models (B2006;
L2006).7

2.2. Scaling Relations

The hierarchical structure formation theory developed byKaiser
(1986) predicts simple relationships between physical parameters
of collapsed structures, known as scaling relations. With the as-
sumptions of hydrostatic equilibrium and of an isothermal dis-
tribution for both the dark matter and the cluster gas (e.g., Bryan
&Norman 1998), it can be shown that there is a simple relation-
ship between a cluster’s total mass and its gas temperature Te:

Te / M
2=3
tot E(z)

2=3; ð3Þ

where themass is calculated out to a radius of mean overdensity#,
Mtot ¼ Mtot(r#). For fgas & Mgas /Mtot, [Mgas ¼ Mgas(r#)], the ex-
pected relationship between the gas mass within r# and the gas
temperature is

Te f
2=3
gas / M 2=3

gas E(z)
2=3: ð4Þ

The Compton y-parameter is a measure of the pressure in-
tegrated along the line of sight:

y ¼
Z 1

0

#Tne
kBTe
mec2

dl; ð5Þ

One can further integrate the y-parameter over the solid angle"
subtended by the cluster, to obtain the integrated Compton
y-parameter:

Y &
Z

"
y d" ¼ 1

D2
A

kB#T

mec2

! "Z 1

0

dl

Z

A

neTe dA; ð6Þ

where A is the area of the cluster in the plane of the sky. In the
context of an isothermal model, Y is proportional to the integral
of the electron density ne over a cylindrical volume; thus,

YD2
A / Te

Z
ne dV ¼ MgasTe ¼ fgasMtotTe: ð7Þ

In x 5we consider the effect of integrating gasmasswithin a spher-
ical volume while determining Y in a cylinder. Using equation (3)
we can rewrite equation (7) in terms of either Mtot or Te, or
substitute Mgas /fgas for Mtot , to obtain

YD2
A / fgasT

5=2
e E(z)"1;

YD2
A / fgasM

5=3
tot E(z)

2=3;

YD2
A / f "2=3

gas M 5=3
gas E(z)

2=3: ð8Þ

Equation (8) describes the scaling relations that we investigate
observationally in this paper.

3. SZE AND CHANDRA X-RAY OBSERVATIONS
OF GALAXY CLUSTERS

3.1. Data

We analyze the SZE and X-ray data observations of 38 clusters
in the redshift range z ¼ 0:14Y0:89, observed with the Berkeley-
Illinois-Maryland Array (BIMA) and Owens Valley Radio Ob-
servatory (OVRO) interferometric arrays and with the Chandra
X-ray imaging spectrometers. Both data modeling with the iso-
thermal $-model and the data themselves are presented in B2006
and L2006, the previous two papers in this series. We refer to
L2006 for details on the observations and data modeling and to

7 The use of a constant overdensity factor # was shown by Maughan et al.
(2006) to give results similar to the case of a variable overdensity factor#(z) ¼
#(0)½#v(z)/#v(0)(, in which the variable overdensity scaleswith redshift in order
to keep the ratio of two comoving densities constant.

SZE SCALING RELATIONS 107

ρc(z) = critical density at redshift z
        ∝

σ = 1D galaxy velocity dispersion
Te = gas (electron) temperature
β = 1 for ideal gas in equipartition, no gravity

STATISTICAL PROPERTIES OF X-RAY CLUSTERS 81

arguments may only identify a scaling property between quantities without specifying a normalization, which can, however,
be Ðxed by numerical simulation (or by further assumptions). This describes the scaling laws that come from considering
clusters as spherical clouds of gas in hydrostatic equilibrium. Frenk, & White hereafter NFW) recentlyNavarro, (1995 ;
compared the results of six clusters simulated with SPH in a cold dark matter (CDM) scenario against these scaling relations
(at z \ 0). They Ðnd good agreement over a wide range of luminosity, mass, and temperature but claim that clusters from
Eulerian simulations (such as in et al. and et al. do not.Kang 1994a Bryan 1994a)

Another analytic method is that initially described by & Schechter which predicts the mass distribution ofPress (1974),
collapsed objects. There have been a number of comparisons between its predictions and the results of N-body simulations

et al. et al. & Cole Using the scaling results, this theory can be extended to produce(Efstathiou 1988 ; Bond 1991 ; Lacey 1996).
the temperature Cole, & Frenk and luminosity distribution functions. Since this is one of the most widely used(Eke, 1996)
constraints on the amplitude of mass Ñuctuations, it is important to check its validity.

In this paper, we make a detailed comparison between simulation results and the adiabatic scaling laws as well as the
Press-Schechter formalism with extensions. This allows us to gauge the accuracy and consistency of both methods, leading to
Ðrmer conclusions regarding the viability of the cosmology modeled. The paper is laid out as follows. In we review the° 2,
scaling relations, including a modiÐcation to take into account the Ðnite resolution of Eulerian codes. We then compare these
to the results of CDM and cold plus hot dark matter (CHDM) simulations at a variety of redshifts. In we examine the° 3,
mass, temperature, and luminosity distribution functions, including the e†ects of Ðnite bandpass and line emission. These are
compared against the Press-Schechter plus scaling theory (extended to include the additional complications in the luminosity
function). In we brieÑy examine the proÐles of temperature and velocity dispersion to assess the accuracy of the isothermal° 4
models assumed in extending the Press-Schechter work. Finally, in we discuss our results and comment on the viability of° 5,
the models simulated.

2. SCALING RELATIONS

Here we review the scaling relations between cluster bulk properties through the assumption of a pressure-supported
isothermal sphere for both the gas temperature, T , and one-dimensional collisionless velocity dispersion, p, of the dark matter
particles. The assumption of a speciÐc density proÐle (here the isothermal sphere) is not required to obtain the scaling
behavior but is needed to determine the constant of proportionality between the given quantities.

These relations were used by to describe the evolution of ““ characteristic ÏÏ quantities, largely driven by theKaiser (1986)
nonlinear mass deÐned via below, as well as to derive relations between distribution functions at di†erent(Mnl), equation (20)
epochs. We do not explicitly test these because they are uniquely speciÐed by the nonlinear mass (which we do examine) and
the scaling relations discussed below.

2.1. Scaling Review and Normalization

In the isothermal distribution function, the density is related to the velocity dispersion & Tremaine(Binney 1987) :

o(r) \ p2
2nGr2 . (2)

If we deÐne as the radius of a spherical volume within which the mean density is times the critical density at that redshiftrvir *
cthen there is a relation between the virial mass and the one-dimensional velocity dispersion :(M \ 4nrvir3 ocrit*c

/3),

p \ M1@3[H2(z)*
c
G2/16]1@6 (3)
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In the second line we have introduced a factor, which will be used to match the normalization from the simulations. Thefp,
redshift-dependent Hubble constant can be written as H(z) \ 100 h E(z) km s~1 Mpc with the function E2 \ )0(1 ] z)3

dependent on three contributions :] )
R
(1 ] z)2 ] )"
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Here, is the nonrelativistic matter density, R is the radius of curvature, and " is the cosmological constant.o0The value of is taken from the solution to the collapse of a spherical top-hat perturbation under the assumption that the*
ccluster has just virialized Its value is 18n2 for a critical universe but has a dependence on cosmology through(Peebles 1980).

the parameter We have calculated this for the cases & Cole and et)(z) \ )0(1 ] z)3/E(z)2. )" \ 0 (Lacey 1993) )
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where x \ )(z) [ 1. These are accurate to 1% in the range )(z) \ 0.1È1.
If the distribution of the baryonic gas is also isothermal, we can deÐne a ratio of the ““ temperature ÏÏ of the collisionless

material to the gas temperature :(Tp \ km
p
p2/k)

b \ km
p
p2

kT
. (7)

2003), and all cluster X-ray properties are derived using data from
the Chandra X-ray Observatory. Finally, our Chandra observa-
tions have an order of magnitude better spatial resolution than
the X-ray data used in previous studies, which greatly improves
our ability to identify and exclude compact foreground sources
that are superimposed on the cluster X-ray emission.

Throughout the paper, we assume a !CDM cosmology with
"M ¼ 0:3, "! ¼ 0:7, and h ¼ 0:7, where h is defined such that
H0 ¼ 100 h km s"1 Mpc"1. All uncertainties are at the 68.3%
confidence level.

2. THEORY OF CLUSTER SCALING RELATIONS

2.1. The Virial Radius and r2500

In order to establish relationships between mass, SZE flux, and
other cluster properties, one needs to define a radius out to which
all quantities will be calculated. This radius should be physically
motivated, reachable with the current X-ray and SZE observations,
and equivalent for clusters of different redshift. One candidate is
the virial radius. In a Friedman-Robertson-Walker universe, an
unperturbed spherical region expands indefinitely, while a per-
turbed overdense region (the seed of a future cluster) eventually
recollapses. When the overdense region collapses under the effect
of its own gravity, it is assumed to reach virial equilibrium when
the radius is half of that at maximum expansion (Peebles 1980;
Lacey & Cole 1993). The ratio of the mean cluster density to the
background density at the time of virialization is#v ¼ 18!2 for
a universe with critical matter density ("M ¼ 1). For a different
cosmology with "k ¼ 0, Bryan & Norman (1998) showed that
#v ’ 18!2 þ 82x" 39x2, where x ¼ "M0(1þ z)3 /E2(z) and
E2(z) ¼ "M0(1þ z)3 þ "! þ "k0(1þ z)2, as found from a fit to
numerical simulations (Lacey & Cole 1993).

With this characterization of the mean cluster density at time
of virialization, the virial radius can be determined as the radius
within which the average density of the cluster is #v times the
critical density, via

4

3
!"c(z)#v(z)r

3
vir ¼ Mtot r# v(z)

h i
; ð1Þ

in which both "c(z) and#v(z) are cosmology dependent, and the
critical density "c(z) is defined as

"c(z) ¼
3H 2

0 E(z)
2

8!G
: ð2Þ

Unfortunately, the virial radius is usually unreachable with cur-
rent X-ray and SZE measurements, and one is forced to perform
measurements out to a smaller radius. Such a radius (r#) is char-
acterized by the density contrast parameter# in place of #v(z)
in equation (1), and it corresponds to a higher average density,
4/3ð Þ!"c(z)#r 3# ¼Mtot(r#). We choose a contrast parameter# ¼
2500, corresponding to an average density of 2500 times the
critical density at the cluster’s redshift. This choice is motivated
by the fact that this is the radius typically reachable with our SZE
and X-ray data without any extrapolation of the models (B2006;
L2006).7

2.2. Scaling Relations

The hierarchical structure formation theory developed byKaiser
(1986) predicts simple relationships between physical parameters
of collapsed structures, known as scaling relations. With the as-
sumptions of hydrostatic equilibrium and of an isothermal dis-
tribution for both the dark matter and the cluster gas (e.g., Bryan
&Norman 1998), it can be shown that there is a simple relation-
ship between a cluster’s total mass and its gas temperature Te:

Te / M
2=3
tot E(z)

2=3; ð3Þ

where themass is calculated out to a radius of mean overdensity#,
Mtot ¼ Mtot(r#). For fgas & Mgas /Mtot, [Mgas ¼ Mgas(r#)], the ex-
pected relationship between the gas mass within r# and the gas
temperature is

Te f
2=3
gas / M 2=3

gas E(z)
2=3: ð4Þ

The Compton y-parameter is a measure of the pressure in-
tegrated along the line of sight:

y ¼
Z 1

0

#Tne
kBTe
mec2

dl; ð5Þ

One can further integrate the y-parameter over the solid angle"
subtended by the cluster, to obtain the integrated Compton
y-parameter:

Y &
Z

"
y d" ¼ 1

D2
A

kB#T

mec2

! "Z 1

0

dl

Z

A

neTe dA; ð6Þ

where A is the area of the cluster in the plane of the sky. In the
context of an isothermal model, Y is proportional to the integral
of the electron density ne over a cylindrical volume; thus,

YD2
A / Te

Z
ne dV ¼ MgasTe ¼ fgasMtotTe: ð7Þ

In x 5we consider the effect of integrating gasmasswithin a spher-
ical volume while determining Y in a cylinder. Using equation (3)
we can rewrite equation (7) in terms of either Mtot or Te, or
substitute Mgas /fgas for Mtot , to obtain

YD2
A / fgasT

5=2
e E(z)"1;

YD2
A / fgasM

5=3
tot E(z)

2=3;

YD2
A / f "2=3

gas M 5=3
gas E(z)

2=3: ð8Þ

Equation (8) describes the scaling relations that we investigate
observationally in this paper.

3. SZE AND CHANDRA X-RAY OBSERVATIONS
OF GALAXY CLUSTERS

3.1. Data

We analyze the SZE and X-ray data observations of 38 clusters
in the redshift range z ¼ 0:14Y0:89, observed with the Berkeley-
Illinois-Maryland Array (BIMA) and Owens Valley Radio Ob-
servatory (OVRO) interferometric arrays and with the Chandra
X-ray imaging spectrometers. Both data modeling with the iso-
thermal $-model and the data themselves are presented in B2006
and L2006, the previous two papers in this series. We refer to
L2006 for details on the observations and data modeling and to

7 The use of a constant overdensity factor # was shown by Maughan et al.
(2006) to give results similar to the case of a variable overdensity factor#(z) ¼
#(0)½#v(z)/#v(0)(, in which the variable overdensity scaleswith redshift in order
to keep the ratio of two comoving densities constant.
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For the 100 kpc cut model, we use the likelihood analysis based
on the MCMC method and fit the SZE and X-ray data jointly; !c
and " are linked between X-ray and SZE data sets (Reese et al.
2000), and the X-ray spectral model is also included. Since the
SZE data do not constrain !c and " well individually, the X-ray
data set drives the fit to these parameters while!T0 is allowed to
find its best-fit value. The central 100 kpc are excluded from the
X-ray data but not from the SZE data. Since the data sets are in-
dependent, the X-ray and SZE spatial log likelihoods and spectral
log likelihood are added to determine the joint likelihood for this
model.

For the SZE-only model, the MCMC method is used to fit the
SZE data to an isothermal "-model; " is fixed at 0.7 while !c and
!T0 are allowed to find their best-fit values. An X-ray spectral
model with the central 100 kpc excluded from the X-ray data is
also included. Since the SZE and X-ray data sets are independent,
the SZE spatial log likelihood and X-ray spectral log likelihood
are added to determine the joint likelihood for this model.

4.2.1. Gas Mass, Total Mass, and Gas Mass Fraction

With the best-fit ICMmodel and X-ray temperature in hand, it
is straightforward to compute the gas mass and total mass of the
cluster. For the "-model, the enclosed gas mass is obtained by
integrating the best-fit 3D gas density profile,

Mgas rð Þ ¼ A

Z r=DA

0

1þ !2

!2c

! "%3"=2

!2 d!; ð11Þ

where A ¼ 4#$ene0mpD
3
A, and $e, the mean molecular weight

of the electrons, is determined from the X-ray spectral data. By
assuming the isothermal gas temperature, we can compute the
gas mass independently from both the X-ray and SZE data sets.
For the X-ray data, the model central electron density ne0 can be
expressed analytically as (Birkinshaw et al. 1991)

ne0 ¼
SX04# 1þ zð Þ4 $H=$eð Þ" 3"ð Þ
#eHDA#1=2" 3" % 1=2ð Þ!c

" #1=2

: ð12Þ

For the SZE, the model central electron density can be expressed
as (e.g., Grego et al. 2001)

ne0 ¼
!T0mec

2" 3=2ð Þ"½ '
f X;Teð ÞTCMB%TkBTeDA#1=2" 3=2ð Þ" % 1=2½ '!c

: ð13Þ

For the 100 kpc cut model, we compute the gas mass using equa-
tion (11) by extrapolating the model into the cluster centers. For
the nonisothermal "-model, the gas mass is obtained by integrat-
ing the best-fit central density over a distribution similar to equa-
tion (11) but that accounts for the additional density component.
In this case $e is treated as a constant, as its value changes by only
0.3% over the radial range considered. In the SZE-only analysis,
the gas mass is computed using equation (11) with model central
density from equation (13).

The total mass, Mtotal, can be obtained by solving the hydro-
static equilibrium equation as

Mtotal rð Þ ¼ % kr 2

G$totalmp
Te rð Þ dne rð Þ

dr
þ ne rð Þ dTe rð Þ

dr

# $
: ð14Þ

Under the isothermal assumption, this reduces to the simple
analytic form (e.g., Grego et al. 2001):

Mtotal rð Þ ¼ 3"kTe
G$mp

r 3

r 2c þ r 2
; ð15Þ

which can be used to calculate total masses for both the 100 kpc
cut and SZE-only models. For the nonisothermal "-model, the
temperature derivative in equation (14) is simple to compute
numerically. We then compute X-ray and SZE gas mass fractions
as fgas ¼ Mgas/Mtotal for the sample of 38 clusters.

4.3. Comparison of the Density Models Fit to X-Ray Data

We now compare the results of the X-ray surface brightness
modeling and the cluster parameters extracted using different
ICMmodels. The primary goal of this comparison is to assess the
effects of the isothermal assumption and different treatments of the
cluster core.
Figure 1 shows the isothermal"-model, nonisothermal"-model,

and 100 kpc cut model as fit to both the nonYcool-core cluster
A1995 and the cool-core cluster A1835. TheX-ray surface bright-
ness profiles are background-subtracted and constructed using con-
centric annuli centered on the cluster (e.g., Bonamente et al. 2006).
The model fitting is done to the entire two-dimensional cluster
image. Table 2 lists the spatial (!c and "), spectral (isothermal
spectroscopic gas temperature TX), and inferred (Mgas, Mtotal,
and fgas) cluster quantities obtained using these three ICM mod-
els. The radius r2500 is computed using parameters from the 100 kpc
cut models. Temperature profiles and data points for the non-
isothermal models can be found in Bonamente et al. (2006),
who demonstrate that the spectroscopic data are well fit by the
model temperature profiles.
In the case of A1995 (a nonYcool-core cluster), we find that

the results are largely insensitive to the chosen model. The sur-
face brightness profiles appear well fit by all three models, and
the derived gas masses, total masses, and gas mass fractions are
in good agreement. Although !c and " differ slightly, these param-
eters are sufficiently degenerate that the difference has a very small
effect on the derived masses. These results illustrate that the sim-
ple 100 kpc cut model works as well as the more sophisticated
nonisothermal double "-model for the nonYcool-core clusters.
Analysis of the cool-core cluster A1835, on the other hand,

highlights the importance of a proper treatment of the cluster core.
The most striking differences are the masses derived from the iso-
thermal "-model versus those from the other two models. This
illustrates the shortcomings of a brute force application of the iso-
thermal "-model to cool-core clusters. Themass discrepancies can
be attributed to a poorer fit to the surface brightness at r > 100 kpc;
this arises because the fit is drivenmainly by the extremely high
signal-to-noise ratio data in the cluster core. A1835 and other
cool-core clusters tend to have extremely small core radii and
"-parameters when fit by a single isothermal "-model. We also
find that the X-ray spectroscopic temperature, TX, is biased low
when the core is included in the determination of TX, which has
an additional impact on the total mass estimate of the cluster.
The models can be quantitatively compared using a goodness-

of-fit analysis. Goodness of fit for the X-ray data is assessed
using Monte Carlo simulations, following Winkler et al. (1995).
For a given cluster, we construct the best-fit model and compare
with the data to determine the fit statistic from equation (9). Poisson
noise is then randomly added to the best-fit model, creating 104

new realizations, and the fit statistic is calculated for each by
comparing them with the original best-fit model. The fraction
of simulations that give a lower fit statistic than that of the best-
fit model compared to the data is called the ‘‘goodness’’ (e.g.,
Jonker et al. 2005), with values near 0.5 indicating a good fit to
the data and values near 0 or 1 indicating a poor fit.
In the case of A1995, all three models (standard isothermal ",

100 kpc cut, and nonisothermal) provide acceptable descriptions
of the data, with respective goodness values of 0.416, 0.427, and
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to fit a model to the spectrum and determine the X-ray spectro-
scopic temperature and metallicity of the cluster.

Interferometric radio observations of the cluster SZE were per-
formed at the BIMA observatory and at OVRO. The millimeter-
wave arrays were equipped with 26Y36 GHz receivers for the SZE
observations (Carlstrom et al. 1996). Most of the OVRO and
BIMA telescopes were placed in a compact configuration to pro-
vide sensitivity on angular scales subtended by distant clusters
(typically !10), and a few telescopes were placed at longer base-
lines for simultaneous point-source imaging (Reese et al. 2002).

The SZE data consist of the position in the Fourier domain (u-v
plane) and the visibilities—the real and imaginary Fourier compo-
nent pairs as functions of u and v, which are the Fourier conjugate
variables to right ascension and declination. The effective resolu-
tion of the interferometer, the synthesized beam, depends on the
u-v coverage and is therefore a function of the array configuration
and source position. A typical size for the synthesized beam for the
short baseline data is!10. Details of the SZE data reduction can be
found in Grego et al. (2001) and Reese et al. (2002). Briefly, the
SZE data were reduced using the MIRIAD (Sault et al. 1995) and
MMA (Scoville et al. 1993) software packages. Absolute flux cal-
ibration was performed using Mars observations adopting the
brightness temperature from the Rudy (1987) Mars model. The
gainwasmonitoredwith observations of bright radio point sources
and remained stable at the 1% level over a period of months. Data
were excisedwhen one telescope was shadowed by another, when
cluster observations were not bracketed by two phase calibrators,
when there were anomalous changes in the instrumental response
between calibrator observations, or when there was spurious
correlation.

Images were made with the DIFMAP software package
(Pearson et al. 1994) to inspect the data quality and, using only
long baseline data, to identify and fix the positions of radio point
sources. The point-source fluxes are included as free parameters in
the model fitting, using the same methodology as in Reese et al.
(2002).

4. ANALYSIS METHODS AND MODELING

4.1. Cluster Density Models

The isothermal !-model has frequently been used in the anal-
ysis of X-ray and SZE cluster images (Cavaliere & Fusco-Femiano
1976; Fusco-Femiano 1978; Jones & Forman 1984; Elbaz et al.
1995; Grego et al. 2001; Reese et al. 2002; Ettori et al. 2004). The
three-dimensional (3D) electron number density is given by

ne rð Þ ¼ ne0 1þ r 2

r 2c

! "&3!=2

; ð4Þ

where ne is the electron number density, r is the radius from the
center of the cluster, rc is the core radius of the ICM, and ! is a
power-law index. A convenient feature of the isothermal!-model
is that the X-ray surface brightness and SZE decrement profiles
take simple analytic forms,

SX ¼ SX0 1þ "2

"2c

! " 1&6!ð Þ=2

; ð5Þ

!T ¼ !T0 1þ "2

"2c

! " 1&3!ð Þ=2

; ð6Þ

where SX0 is the central X-ray surface brightness, !T0 is the
central thermodynamic SZE temperature decrement /increment,
and "c is the angular core radius of the cluster.

However, recent deep X-rayChandra observations and numer-
ical simulations indicate that the!-model is not a good description
in the outskirts (r > 1r2500Y1:5r2500) of clusters (Borgani et al.
2004; Vikhlinin et al. 2006); to avoid biases associated with this
effect, we compute masses enclosed within r2500, the radius at
which the mean enclosed mass density is equal to 2500#crit. Re-
sults are not extrapolated beyond this radius. Incidentally, r2500 is
also the outer limiting radius at which both the Chandra (e.g.,
Allen et al. 2004) and BIMA/OVRO data (Grego et al. 2001) pro-
vide strong constraints on the ICM model.
In some clusters the isothermal !-model fails to provide a good

description of the X-ray surface brightness observed in the cluster
core. This is the case, for instance, in highly relaxed clusters with
sharply peaked central X-ray emission. We have therefore devel-
oped two extensions of the isothermal !-model to overcome this
limitation; we describe these new models and their application to
the X-ray and SZE data below.

4.1.1. The 100 kpc Cut Model

First we consider a single isothermal !-model fit to the X-ray
datawith the central 100 kpc excised. The 100 kpc radius is a good
compromise, as it is large enough to exclude the cooling region in
cool-core clusters while keeping a sufficient number of photons to
enable the mass modeling. The X-ray spectroscopic temperature
is also determined using photons extracted from a radial shell be-
tween 100 kpc and r2500. This is referred to as the 100 kpc cut
model in the remainder of this work.
There is no simple way to excise the central 100 kpc from the

interferometric SZE data because these data are fit in the Fourier
plane. We therefore fit the entire SZE data set, while using the
X-ray spectroscopic temperature from the 100 kpc cut model.
The inclusion of the dense core in the SZE data should have little
effect on the derived cluster parameters because the SZE as a
probe of pressure is less sensitive to behavior in the dense core
than are the X-ray data. It should also have little effect on the best-
fit shape parameters, "c and !, because these fits are drivenmainly
by the X-ray data. The SZE data therefore mainly constrain the
overall normalization of the SZE signal, which is insensitive to the
details of the cluster core (e.g., Nagai 2006).

4.1.2. The Nonisothermal Double !-Model

We also develop a more sophisticated cluster plasma model
that takes into account temperature profiles. A motivation for
considering this model is to assess the biases arising from the
isothermal assumption and the effects of the core exclusion in the
previous model.
The model uses a second !-model component to describe the

sharply peaked X-ray emission present in the cores of some clus-
ters (Mohr et al. 1999). The 3D density profile of the double
!-model is expressed by

ne rð Þ ¼ ne0 f 1þ r 2

r 2c1

 !&3!=2

þ 1& fð Þ 1þ r 2

r 2c2

 !&3!=2
2

4

3

5;

ð7Þ

where the two core radii, rc1 and rc2 , describe the narrow, peaked
central density component and the broad, shallow outer density
profile, respectively, and f represents the fractional contribution
of the narrow, peaked component to the central density ne0 (0 '
f ' 1). This model has enough freedom to simultaneously fit
the X-ray surface brightness in the outer regions and the central
emission excess seen in some clusters. We set f ¼ 0 (equivalent
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For the 100 kpc cut model, we use the likelihood analysis based
on the MCMC method and fit the SZE and X-ray data jointly; !c
and " are linked between X-ray and SZE data sets (Reese et al.
2000), and the X-ray spectral model is also included. Since the
SZE data do not constrain !c and " well individually, the X-ray
data set drives the fit to these parameters while!T0 is allowed to
find its best-fit value. The central 100 kpc are excluded from the
X-ray data but not from the SZE data. Since the data sets are in-
dependent, the X-ray and SZE spatial log likelihoods and spectral
log likelihood are added to determine the joint likelihood for this
model.

For the SZE-only model, the MCMC method is used to fit the
SZE data to an isothermal "-model; " is fixed at 0.7 while !c and
!T0 are allowed to find their best-fit values. An X-ray spectral
model with the central 100 kpc excluded from the X-ray data is
also included. Since the SZE and X-ray data sets are independent,
the SZE spatial log likelihood and X-ray spectral log likelihood
are added to determine the joint likelihood for this model.

4.2.1. Gas Mass, Total Mass, and Gas Mass Fraction

With the best-fit ICMmodel and X-ray temperature in hand, it
is straightforward to compute the gas mass and total mass of the
cluster. For the "-model, the enclosed gas mass is obtained by
integrating the best-fit 3D gas density profile,

Mgas rð Þ ¼ A

Z r=DA

0

1þ !2

!2c

! "%3"=2

!2 d!; ð11Þ

where A ¼ 4#$ene0mpD
3
A, and $e, the mean molecular weight

of the electrons, is determined from the X-ray spectral data. By
assuming the isothermal gas temperature, we can compute the
gas mass independently from both the X-ray and SZE data sets.
For the X-ray data, the model central electron density ne0 can be
expressed analytically as (Birkinshaw et al. 1991)

ne0 ¼
SX04# 1þ zð Þ4 $H=$eð Þ" 3"ð Þ
#eHDA#1=2" 3" % 1=2ð Þ!c

" #1=2

: ð12Þ

For the SZE, the model central electron density can be expressed
as (e.g., Grego et al. 2001)

ne0 ¼
!T0mec

2" 3=2ð Þ"½ '
f X;Teð ÞTCMB%TkBTeDA#1=2" 3=2ð Þ" % 1=2½ '!c

: ð13Þ

For the 100 kpc cut model, we compute the gas mass using equa-
tion (11) by extrapolating the model into the cluster centers. For
the nonisothermal "-model, the gas mass is obtained by integrat-
ing the best-fit central density over a distribution similar to equa-
tion (11) but that accounts for the additional density component.
In this case $e is treated as a constant, as its value changes by only
0.3% over the radial range considered. In the SZE-only analysis,
the gas mass is computed using equation (11) with model central
density from equation (13).

The total mass, Mtotal, can be obtained by solving the hydro-
static equilibrium equation as

Mtotal rð Þ ¼ % kr 2

G$totalmp
Te rð Þ dne rð Þ

dr
þ ne rð Þ dTe rð Þ

dr

# $
: ð14Þ

Under the isothermal assumption, this reduces to the simple
analytic form (e.g., Grego et al. 2001):

Mtotal rð Þ ¼ 3"kTe
G$mp

r 3

r 2c þ r 2
; ð15Þ

which can be used to calculate total masses for both the 100 kpc
cut and SZE-only models. For the nonisothermal "-model, the
temperature derivative in equation (14) is simple to compute
numerically. We then compute X-ray and SZE gas mass fractions
as fgas ¼ Mgas/Mtotal for the sample of 38 clusters.

4.3. Comparison of the Density Models Fit to X-Ray Data

We now compare the results of the X-ray surface brightness
modeling and the cluster parameters extracted using different
ICMmodels. The primary goal of this comparison is to assess the
effects of the isothermal assumption and different treatments of the
cluster core.
Figure 1 shows the isothermal"-model, nonisothermal"-model,

and 100 kpc cut model as fit to both the nonYcool-core cluster
A1995 and the cool-core cluster A1835. TheX-ray surface bright-
ness profiles are background-subtracted and constructed using con-
centric annuli centered on the cluster (e.g., Bonamente et al. 2006).
The model fitting is done to the entire two-dimensional cluster
image. Table 2 lists the spatial (!c and "), spectral (isothermal
spectroscopic gas temperature TX), and inferred (Mgas, Mtotal,
and fgas) cluster quantities obtained using these three ICM mod-
els. The radius r2500 is computed using parameters from the 100 kpc
cut models. Temperature profiles and data points for the non-
isothermal models can be found in Bonamente et al. (2006),
who demonstrate that the spectroscopic data are well fit by the
model temperature profiles.
In the case of A1995 (a nonYcool-core cluster), we find that

the results are largely insensitive to the chosen model. The sur-
face brightness profiles appear well fit by all three models, and
the derived gas masses, total masses, and gas mass fractions are
in good agreement. Although !c and " differ slightly, these param-
eters are sufficiently degenerate that the difference has a very small
effect on the derived masses. These results illustrate that the sim-
ple 100 kpc cut model works as well as the more sophisticated
nonisothermal double "-model for the nonYcool-core clusters.
Analysis of the cool-core cluster A1835, on the other hand,

highlights the importance of a proper treatment of the cluster core.
The most striking differences are the masses derived from the iso-
thermal "-model versus those from the other two models. This
illustrates the shortcomings of a brute force application of the iso-
thermal "-model to cool-core clusters. Themass discrepancies can
be attributed to a poorer fit to the surface brightness at r > 100 kpc;
this arises because the fit is drivenmainly by the extremely high
signal-to-noise ratio data in the cluster core. A1835 and other
cool-core clusters tend to have extremely small core radii and
"-parameters when fit by a single isothermal "-model. We also
find that the X-ray spectroscopic temperature, TX, is biased low
when the core is included in the determination of TX, which has
an additional impact on the total mass estimate of the cluster.
The models can be quantitatively compared using a goodness-

of-fit analysis. Goodness of fit for the X-ray data is assessed
using Monte Carlo simulations, following Winkler et al. (1995).
For a given cluster, we construct the best-fit model and compare
with the data to determine the fit statistic from equation (9). Poisson
noise is then randomly added to the best-fit model, creating 104

new realizations, and the fit statistic is calculated for each by
comparing them with the original best-fit model. The fraction
of simulations that give a lower fit statistic than that of the best-
fit model compared to the data is called the ‘‘goodness’’ (e.g.,
Jonker et al. 2005), with values near 0.5 indicating a good fit to
the data and values near 0 or 1 indicating a poor fit.
In the case of A1995, all three models (standard isothermal ",

100 kpc cut, and nonisothermal) provide acceptable descriptions
of the data, with respective goodness values of 0.416, 0.427, and
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2003), and all cluster X-ray properties are derived using data from
the Chandra X-ray Observatory. Finally, our Chandra observa-
tions have an order of magnitude better spatial resolution than
the X-ray data used in previous studies, which greatly improves
our ability to identify and exclude compact foreground sources
that are superimposed on the cluster X-ray emission.

Throughout the paper, we assume a !CDM cosmology with
"M ¼ 0:3, "! ¼ 0:7, and h ¼ 0:7, where h is defined such that
H0 ¼ 100 h km s"1 Mpc"1. All uncertainties are at the 68.3%
confidence level.

2. THEORY OF CLUSTER SCALING RELATIONS

2.1. The Virial Radius and r2500

In order to establish relationships between mass, SZE flux, and
other cluster properties, one needs to define a radius out to which
all quantities will be calculated. This radius should be physically
motivated, reachable with the current X-ray and SZE observations,
and equivalent for clusters of different redshift. One candidate is
the virial radius. In a Friedman-Robertson-Walker universe, an
unperturbed spherical region expands indefinitely, while a per-
turbed overdense region (the seed of a future cluster) eventually
recollapses. When the overdense region collapses under the effect
of its own gravity, it is assumed to reach virial equilibrium when
the radius is half of that at maximum expansion (Peebles 1980;
Lacey & Cole 1993). The ratio of the mean cluster density to the
background density at the time of virialization is#v ¼ 18!2 for
a universe with critical matter density ("M ¼ 1). For a different
cosmology with "k ¼ 0, Bryan & Norman (1998) showed that
#v ’ 18!2 þ 82x" 39x2, where x ¼ "M0(1þ z)3 /E2(z) and
E2(z) ¼ "M0(1þ z)3 þ "! þ "k0(1þ z)2, as found from a fit to
numerical simulations (Lacey & Cole 1993).

With this characterization of the mean cluster density at time
of virialization, the virial radius can be determined as the radius
within which the average density of the cluster is #v times the
critical density, via

4

3
!"c(z)#v(z)r

3
vir ¼ Mtot r# v(z)

h i
; ð1Þ

in which both "c(z) and#v(z) are cosmology dependent, and the
critical density "c(z) is defined as

"c(z) ¼
3H 2

0 E(z)
2

8!G
: ð2Þ

Unfortunately, the virial radius is usually unreachable with cur-
rent X-ray and SZE measurements, and one is forced to perform
measurements out to a smaller radius. Such a radius (r#) is char-
acterized by the density contrast parameter# in place of #v(z)
in equation (1), and it corresponds to a higher average density,
4/3ð Þ!"c(z)#r 3# ¼Mtot(r#). We choose a contrast parameter# ¼
2500, corresponding to an average density of 2500 times the
critical density at the cluster’s redshift. This choice is motivated
by the fact that this is the radius typically reachable with our SZE
and X-ray data without any extrapolation of the models (B2006;
L2006).7

2.2. Scaling Relations

The hierarchical structure formation theory developed byKaiser
(1986) predicts simple relationships between physical parameters
of collapsed structures, known as scaling relations. With the as-
sumptions of hydrostatic equilibrium and of an isothermal dis-
tribution for both the dark matter and the cluster gas (e.g., Bryan
&Norman 1998), it can be shown that there is a simple relation-
ship between a cluster’s total mass and its gas temperature Te:

Te / M
2=3
tot E(z)

2=3; ð3Þ

where themass is calculated out to a radius of mean overdensity#,
Mtot ¼ Mtot(r#). For fgas & Mgas /Mtot, [Mgas ¼ Mgas(r#)], the ex-
pected relationship between the gas mass within r# and the gas
temperature is

Te f
2=3
gas / M 2=3

gas E(z)
2=3: ð4Þ

The Compton y-parameter is a measure of the pressure in-
tegrated along the line of sight:

y ¼
Z 1

0

#Tne
kBTe
mec2

dl; ð5Þ

One can further integrate the y-parameter over the solid angle"
subtended by the cluster, to obtain the integrated Compton
y-parameter:

Y &
Z

"
y d" ¼ 1

D2
A

kB#T

mec2

! "Z 1

0

dl

Z

A

neTe dA; ð6Þ

where A is the area of the cluster in the plane of the sky. In the
context of an isothermal model, Y is proportional to the integral
of the electron density ne over a cylindrical volume; thus,

YD2
A / Te

Z
ne dV ¼ MgasTe ¼ fgasMtotTe: ð7Þ

In x 5we consider the effect of integrating gasmasswithin a spher-
ical volume while determining Y in a cylinder. Using equation (3)
we can rewrite equation (7) in terms of either Mtot or Te, or
substitute Mgas /fgas for Mtot , to obtain

YD2
A / fgasT

5=2
e E(z)"1;

YD2
A / fgasM

5=3
tot E(z)

2=3;

YD2
A / f "2=3

gas M 5=3
gas E(z)

2=3: ð8Þ

Equation (8) describes the scaling relations that we investigate
observationally in this paper.

3. SZE AND CHANDRA X-RAY OBSERVATIONS
OF GALAXY CLUSTERS

3.1. Data

We analyze the SZE and X-ray data observations of 38 clusters
in the redshift range z ¼ 0:14Y0:89, observed with the Berkeley-
Illinois-Maryland Array (BIMA) and Owens Valley Radio Ob-
servatory (OVRO) interferometric arrays and with the Chandra
X-ray imaging spectrometers. Both data modeling with the iso-
thermal $-model and the data themselves are presented in B2006
and L2006, the previous two papers in this series. We refer to
L2006 for details on the observations and data modeling and to

7 The use of a constant overdensity factor # was shown by Maughan et al.
(2006) to give results similar to the case of a variable overdensity factor#(z) ¼
#(0)½#v(z)/#v(0)(, in which the variable overdensity scaleswith redshift in order
to keep the ratio of two comoving densities constant.
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Scaling Relations

• Self-similar model implies scaling relations between quantities
• With Mtot = M(rvir), one has

• Assuming a universal gas fraction (fgas = Mgas/Mtot), one also has

• One can compute observables:
• X-ray temperature TX: same as electron temperature Te.  If isothermality valid, then

“emission-weighted” vs “mass-weighted” (ρ or ρ2 weighting) does not matter.

• X-ray luminosity LX

• Integrated thermal energy Y = MgasTe, accessible by X-ray estimated Mgas and TX or by 
integrated thermal Sunyaev-Zeldovich effect flux
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2003), and all cluster X-ray properties are derived using data from
the Chandra X-ray Observatory. Finally, our Chandra observa-
tions have an order of magnitude better spatial resolution than
the X-ray data used in previous studies, which greatly improves
our ability to identify and exclude compact foreground sources
that are superimposed on the cluster X-ray emission.

Throughout the paper, we assume a !CDM cosmology with
"M ¼ 0:3, "! ¼ 0:7, and h ¼ 0:7, where h is defined such that
H0 ¼ 100 h km s"1 Mpc"1. All uncertainties are at the 68.3%
confidence level.

2. THEORY OF CLUSTER SCALING RELATIONS

2.1. The Virial Radius and r2500

In order to establish relationships between mass, SZE flux, and
other cluster properties, one needs to define a radius out to which
all quantities will be calculated. This radius should be physically
motivated, reachable with the current X-ray and SZE observations,
and equivalent for clusters of different redshift. One candidate is
the virial radius. In a Friedman-Robertson-Walker universe, an
unperturbed spherical region expands indefinitely, while a per-
turbed overdense region (the seed of a future cluster) eventually
recollapses. When the overdense region collapses under the effect
of its own gravity, it is assumed to reach virial equilibrium when
the radius is half of that at maximum expansion (Peebles 1980;
Lacey & Cole 1993). The ratio of the mean cluster density to the
background density at the time of virialization is#v ¼ 18!2 for
a universe with critical matter density ("M ¼ 1). For a different
cosmology with "k ¼ 0, Bryan & Norman (1998) showed that
#v ’ 18!2 þ 82x" 39x2, where x ¼ "M0(1þ z)3 /E2(z) and
E2(z) ¼ "M0(1þ z)3 þ "! þ "k0(1þ z)2, as found from a fit to
numerical simulations (Lacey & Cole 1993).

With this characterization of the mean cluster density at time
of virialization, the virial radius can be determined as the radius
within which the average density of the cluster is #v times the
critical density, via

4

3
!"c(z)#v(z)r

3
vir ¼ Mtot r# v(z)

h i
; ð1Þ

in which both "c(z) and#v(z) are cosmology dependent, and the
critical density "c(z) is defined as

"c(z) ¼
3H 2

0 E(z)
2

8!G
: ð2Þ

Unfortunately, the virial radius is usually unreachable with cur-
rent X-ray and SZE measurements, and one is forced to perform
measurements out to a smaller radius. Such a radius (r#) is char-
acterized by the density contrast parameter# in place of #v(z)
in equation (1), and it corresponds to a higher average density,
4/3ð Þ!"c(z)#r 3# ¼Mtot(r#). We choose a contrast parameter# ¼
2500, corresponding to an average density of 2500 times the
critical density at the cluster’s redshift. This choice is motivated
by the fact that this is the radius typically reachable with our SZE
and X-ray data without any extrapolation of the models (B2006;
L2006).7

2.2. Scaling Relations

The hierarchical structure formation theory developed byKaiser
(1986) predicts simple relationships between physical parameters
of collapsed structures, known as scaling relations. With the as-
sumptions of hydrostatic equilibrium and of an isothermal dis-
tribution for both the dark matter and the cluster gas (e.g., Bryan
&Norman 1998), it can be shown that there is a simple relation-
ship between a cluster’s total mass and its gas temperature Te:

Te / M
2=3
tot E(z)

2=3; ð3Þ

where themass is calculated out to a radius of mean overdensity#,
Mtot ¼ Mtot(r#). For fgas & Mgas /Mtot, [Mgas ¼ Mgas(r#)], the ex-
pected relationship between the gas mass within r# and the gas
temperature is

Te f
2=3
gas / M 2=3

gas E(z)
2=3: ð4Þ

The Compton y-parameter is a measure of the pressure in-
tegrated along the line of sight:

y ¼
Z 1

0

#Tne
kBTe
mec2

dl; ð5Þ

One can further integrate the y-parameter over the solid angle"
subtended by the cluster, to obtain the integrated Compton
y-parameter:

Y &
Z

"
y d" ¼ 1

D2
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kB#T

mec2

! "Z 1

0

dl

Z
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where A is the area of the cluster in the plane of the sky. In the
context of an isothermal model, Y is proportional to the integral
of the electron density ne over a cylindrical volume; thus,

YD2
A / Te

Z
ne dV ¼ MgasTe ¼ fgasMtotTe: ð7Þ

In x 5we consider the effect of integrating gasmasswithin a spher-
ical volume while determining Y in a cylinder. Using equation (3)
we can rewrite equation (7) in terms of either Mtot or Te, or
substitute Mgas /fgas for Mtot , to obtain

YD2
A / fgasT

5=2
e E(z)"1;

YD2
A / fgasM

5=3
tot E(z)

2=3;

YD2
A / f "2=3

gas M 5=3
gas E(z)

2=3: ð8Þ

Equation (8) describes the scaling relations that we investigate
observationally in this paper.

3. SZE AND CHANDRA X-RAY OBSERVATIONS
OF GALAXY CLUSTERS

3.1. Data

We analyze the SZE and X-ray data observations of 38 clusters
in the redshift range z ¼ 0:14Y0:89, observed with the Berkeley-
Illinois-Maryland Array (BIMA) and Owens Valley Radio Ob-
servatory (OVRO) interferometric arrays and with the Chandra
X-ray imaging spectrometers. Both data modeling with the iso-
thermal $-model and the data themselves are presented in B2006
and L2006, the previous two papers in this series. We refer to
L2006 for details on the observations and data modeling and to

7 The use of a constant overdensity factor # was shown by Maughan et al.
(2006) to give results similar to the case of a variable overdensity factor#(z) ¼
#(0)½#v(z)/#v(0)(, in which the variable overdensity scaleswith redshift in order
to keep the ratio of two comoving densities constant.
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2003), and all cluster X-ray properties are derived using data from
the Chandra X-ray Observatory. Finally, our Chandra observa-
tions have an order of magnitude better spatial resolution than
the X-ray data used in previous studies, which greatly improves
our ability to identify and exclude compact foreground sources
that are superimposed on the cluster X-ray emission.

Throughout the paper, we assume a !CDM cosmology with
"M ¼ 0:3, "! ¼ 0:7, and h ¼ 0:7, where h is defined such that
H0 ¼ 100 h km s"1 Mpc"1. All uncertainties are at the 68.3%
confidence level.

2. THEORY OF CLUSTER SCALING RELATIONS

2.1. The Virial Radius and r2500

In order to establish relationships between mass, SZE flux, and
other cluster properties, one needs to define a radius out to which
all quantities will be calculated. This radius should be physically
motivated, reachable with the current X-ray and SZE observations,
and equivalent for clusters of different redshift. One candidate is
the virial radius. In a Friedman-Robertson-Walker universe, an
unperturbed spherical region expands indefinitely, while a per-
turbed overdense region (the seed of a future cluster) eventually
recollapses. When the overdense region collapses under the effect
of its own gravity, it is assumed to reach virial equilibrium when
the radius is half of that at maximum expansion (Peebles 1980;
Lacey & Cole 1993). The ratio of the mean cluster density to the
background density at the time of virialization is#v ¼ 18!2 for
a universe with critical matter density ("M ¼ 1). For a different
cosmology with "k ¼ 0, Bryan & Norman (1998) showed that
#v ’ 18!2 þ 82x" 39x2, where x ¼ "M0(1þ z)3 /E2(z) and
E2(z) ¼ "M0(1þ z)3 þ "! þ "k0(1þ z)2, as found from a fit to
numerical simulations (Lacey & Cole 1993).

With this characterization of the mean cluster density at time
of virialization, the virial radius can be determined as the radius
within which the average density of the cluster is #v times the
critical density, via

4

3
!"c(z)#v(z)r

3
vir ¼ Mtot r# v(z)

h i
; ð1Þ

in which both "c(z) and#v(z) are cosmology dependent, and the
critical density "c(z) is defined as

"c(z) ¼
3H 2

0 E(z)
2

8!G
: ð2Þ

Unfortunately, the virial radius is usually unreachable with cur-
rent X-ray and SZE measurements, and one is forced to perform
measurements out to a smaller radius. Such a radius (r#) is char-
acterized by the density contrast parameter# in place of #v(z)
in equation (1), and it corresponds to a higher average density,
4/3ð Þ!"c(z)#r 3# ¼Mtot(r#). We choose a contrast parameter# ¼
2500, corresponding to an average density of 2500 times the
critical density at the cluster’s redshift. This choice is motivated
by the fact that this is the radius typically reachable with our SZE
and X-ray data without any extrapolation of the models (B2006;
L2006).7

2.2. Scaling Relations

The hierarchical structure formation theory developed byKaiser
(1986) predicts simple relationships between physical parameters
of collapsed structures, known as scaling relations. With the as-
sumptions of hydrostatic equilibrium and of an isothermal dis-
tribution for both the dark matter and the cluster gas (e.g., Bryan
&Norman 1998), it can be shown that there is a simple relation-
ship between a cluster’s total mass and its gas temperature Te:

Te / M
2=3
tot E(z)

2=3; ð3Þ

where themass is calculated out to a radius of mean overdensity#,
Mtot ¼ Mtot(r#). For fgas & Mgas /Mtot, [Mgas ¼ Mgas(r#)], the ex-
pected relationship between the gas mass within r# and the gas
temperature is

Te f
2=3
gas / M 2=3

gas E(z)
2=3: ð4Þ

The Compton y-parameter is a measure of the pressure in-
tegrated along the line of sight:

y ¼
Z 1

0

#Tne
kBTe
mec2

dl; ð5Þ

One can further integrate the y-parameter over the solid angle"
subtended by the cluster, to obtain the integrated Compton
y-parameter:
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y d" ¼ 1
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where A is the area of the cluster in the plane of the sky. In the
context of an isothermal model, Y is proportional to the integral
of the electron density ne over a cylindrical volume; thus,

YD2
A / Te

Z
ne dV ¼ MgasTe ¼ fgasMtotTe: ð7Þ

In x 5we consider the effect of integrating gasmasswithin a spher-
ical volume while determining Y in a cylinder. Using equation (3)
we can rewrite equation (7) in terms of either Mtot or Te, or
substitute Mgas /fgas for Mtot , to obtain

YD2
A / fgasT

5=2
e E(z)"1;

YD2
A / fgasM

5=3
tot E(z)

2=3;
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Equation (8) describes the scaling relations that we investigate
observationally in this paper.

3. SZE AND CHANDRA X-RAY OBSERVATIONS
OF GALAXY CLUSTERS

3.1. Data

We analyze the SZE and X-ray data observations of 38 clusters
in the redshift range z ¼ 0:14Y0:89, observed with the Berkeley-
Illinois-Maryland Array (BIMA) and Owens Valley Radio Ob-
servatory (OVRO) interferometric arrays and with the Chandra
X-ray imaging spectrometers. Both data modeling with the iso-
thermal $-model and the data themselves are presented in B2006
and L2006, the previous two papers in this series. We refer to
L2006 for details on the observations and data modeling and to

7 The use of a constant overdensity factor # was shown by Maughan et al.
(2006) to give results similar to the case of a variable overdensity factor#(z) ¼
#(0)½#v(z)/#v(0)(, in which the variable overdensity scaleswith redshift in order
to keep the ratio of two comoving densities constant.
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(cosmological factor due to dependence of ρc on z)

2003), and all cluster X-ray properties are derived using data from
the Chandra X-ray Observatory. Finally, our Chandra observa-
tions have an order of magnitude better spatial resolution than
the X-ray data used in previous studies, which greatly improves
our ability to identify and exclude compact foreground sources
that are superimposed on the cluster X-ray emission.

Throughout the paper, we assume a !CDM cosmology with
"M ¼ 0:3, "! ¼ 0:7, and h ¼ 0:7, where h is defined such that
H0 ¼ 100 h km s"1 Mpc"1. All uncertainties are at the 68.3%
confidence level.

2. THEORY OF CLUSTER SCALING RELATIONS

2.1. The Virial Radius and r2500

In order to establish relationships between mass, SZE flux, and
other cluster properties, one needs to define a radius out to which
all quantities will be calculated. This radius should be physically
motivated, reachable with the current X-ray and SZE observations,
and equivalent for clusters of different redshift. One candidate is
the virial radius. In a Friedman-Robertson-Walker universe, an
unperturbed spherical region expands indefinitely, while a per-
turbed overdense region (the seed of a future cluster) eventually
recollapses. When the overdense region collapses under the effect
of its own gravity, it is assumed to reach virial equilibrium when
the radius is half of that at maximum expansion (Peebles 1980;
Lacey & Cole 1993). The ratio of the mean cluster density to the
background density at the time of virialization is#v ¼ 18!2 for
a universe with critical matter density ("M ¼ 1). For a different
cosmology with "k ¼ 0, Bryan & Norman (1998) showed that
#v ’ 18!2 þ 82x" 39x2, where x ¼ "M0(1þ z)3 /E2(z) and
E2(z) ¼ "M0(1þ z)3 þ "! þ "k0(1þ z)2, as found from a fit to
numerical simulations (Lacey & Cole 1993).

With this characterization of the mean cluster density at time
of virialization, the virial radius can be determined as the radius
within which the average density of the cluster is #v times the
critical density, via
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vir ¼ Mtot r# v(z)
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in which both "c(z) and#v(z) are cosmology dependent, and the
critical density "c(z) is defined as

"c(z) ¼
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Unfortunately, the virial radius is usually unreachable with cur-
rent X-ray and SZE measurements, and one is forced to perform
measurements out to a smaller radius. Such a radius (r#) is char-
acterized by the density contrast parameter# in place of #v(z)
in equation (1), and it corresponds to a higher average density,
4/3ð Þ!"c(z)#r 3# ¼Mtot(r#). We choose a contrast parameter# ¼
2500, corresponding to an average density of 2500 times the
critical density at the cluster’s redshift. This choice is motivated
by the fact that this is the radius typically reachable with our SZE
and X-ray data without any extrapolation of the models (B2006;
L2006).7

2.2. Scaling Relations

The hierarchical structure formation theory developed byKaiser
(1986) predicts simple relationships between physical parameters
of collapsed structures, known as scaling relations. With the as-
sumptions of hydrostatic equilibrium and of an isothermal dis-
tribution for both the dark matter and the cluster gas (e.g., Bryan
&Norman 1998), it can be shown that there is a simple relation-
ship between a cluster’s total mass and its gas temperature Te:

Te / M
2=3
tot E(z)

2=3; ð3Þ

where themass is calculated out to a radius of mean overdensity#,
Mtot ¼ Mtot(r#). For fgas & Mgas /Mtot, [Mgas ¼ Mgas(r#)], the ex-
pected relationship between the gas mass within r# and the gas
temperature is

Te f
2=3
gas / M 2=3

gas E(z)
2=3: ð4Þ

The Compton y-parameter is a measure of the pressure in-
tegrated along the line of sight:

y ¼
Z 1

0

#Tne
kBTe
mec2

dl; ð5Þ

One can further integrate the y-parameter over the solid angle"
subtended by the cluster, to obtain the integrated Compton
y-parameter:
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where A is the area of the cluster in the plane of the sky. In the
context of an isothermal model, Y is proportional to the integral
of the electron density ne over a cylindrical volume; thus,

YD2
A / Te

Z
ne dV ¼ MgasTe ¼ fgasMtotTe: ð7Þ

In x 5we consider the effect of integrating gasmasswithin a spher-
ical volume while determining Y in a cylinder. Using equation (3)
we can rewrite equation (7) in terms of either Mtot or Te, or
substitute Mgas /fgas for Mtot , to obtain
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Equation (8) describes the scaling relations that we investigate
observationally in this paper.

3. SZE AND CHANDRA X-RAY OBSERVATIONS
OF GALAXY CLUSTERS

3.1. Data

We analyze the SZE and X-ray data observations of 38 clusters
in the redshift range z ¼ 0:14Y0:89, observed with the Berkeley-
Illinois-Maryland Array (BIMA) and Owens Valley Radio Ob-
servatory (OVRO) interferometric arrays and with the Chandra
X-ray imaging spectrometers. Both data modeling with the iso-
thermal $-model and the data themselves are presented in B2006
and L2006, the previous two papers in this series. We refer to
L2006 for details on the observations and data modeling and to

7 The use of a constant overdensity factor # was shown by Maughan et al.
(2006) to give results similar to the case of a variable overdensity factor#(z) ¼
#(0)½#v(z)/#v(0)(, in which the variable overdensity scaleswith redshift in order
to keep the ratio of two comoving densities constant.
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Cluster growth: X-ray scaling relations 1787

Figure 5. Total mass and YX = MgaskTce are plotted for our best-fitting
cosmology (Paper I) and compared with the YX–mass relation predicted
by the best-fitting temperature–mass relation and fgas value. The intrinsic
scatter, indicated by the orange point with error bars, is similar to that of
the temperature–mass relation (∼0.05). Note that the X and Y error bars are
correlated, since Mgas is used to compute both YX and the total mass, M500.
To illustrate this correlation (ρ ≈ 0.85), the (joint, 68.3 per cent confidence)
error ellipse is shown in blue for the rightmost cluster.

(i) the number of clusters detected;
(ii) the two-dimensional distribution of clusters in redshift and

survey flux;
(iii) the marginal distribution of luminosities from follow-up ob-

servations given the mass and redshift measurements and
(iv) the marginal distribution of temperatures from follow-up ob-

servations given the measurements of mass, luminosity and redshift.

The number of clusters in each sample is straightforwardly Pois-
son distributed. For each sample, we define a significance value as
the probability of finding a number of clusters that is at least as
discrepant from the predicted mean as the measured value.

To test the survey flux-redshift distribution of sources, we use
a two-dimensional analog of the Kolmogorov–Smirnov (KS) test
due to Peacock (1983) and Fasano & Franceschini (1987, see also
Press et al. 1992). Briefly, the test involves comparing the predicted
and detected numbers of clusters in each of the four quadrants
(z ≥ ẑ, F ≥ F̂ ; z < ẑ, F ≥ F̂ ; etc.) about each cluster detection,
(ẑ, F̂ ). The maximum discrepancy between these predictions and
measurements is compared with a modification of the Kolmogorov
D distribution to obtain the associated significance.

The goodness of fit of the marginal luminosity–mass relation is
tested by comparing the luminosities measured in the follow-up
observations, "̂, to their predicted distribution given the measured
masses and redshifts, m̂ and ẑ, and the detection of the cluster,
indicated by I. This density, P ("̂′|ẑ, m̂, I ), is closely related to the
probability associated with a detected cluster in the likelihood func-
tion (see Appendix B), the principle difference being that the survey
flux measurement should not be taken into account here. That is,
the predicted distribution of "̂ accounts for the mass function, the
measured mass with its statistical error, and the selection bias. How-
ever, it should not account for the specific flux value measured in
the survey, or the expression would reduce to a test of how well the

Table 10. Significance values for each goodness-of-fit
test applied to each cluster sample. Very low values
(<0.01) would indicate that the model is inadequate to
describe the data (though, formally, the probability of
randomly obtaining some low values in a sample of 12
would need to be taken into account).

Test BCS REFLEX MACS

Number 0.73 0.69 0.21
Redshift-flux 0.18 0.78 0.79
Luminosity–mass 0.42 0.93 0.35
Temperature–mass 0.19 0.28 0.92

two flux measurements agree. This distribution can be calculated
numerically as a function of "̂′ and compared with the measured val-
ues, "̂. Since the shape of P ("̂′|ẑ, m̂, I ) is slightly different for each
cluster, these residuals are not individually statistically meaningful.
However, the cumulative values C =

∫ "̂

0 P ("̂′|ẑ, m̂, I )d"̂′ will be
distributed uniformly on [0, 1], provided that the predicted distri-
butions are accurate, independent of the fact that those distributions
are not identical. Thus, we can test whether the fit is a consistent
description of the luminosity–mass relation by checking whether
these C values are uniformly distributed, using a one-sample KS
test. An analogous procedure is used to test the residuals of the
temperature–mass relation.

For the purpose of this goodness-of-fit test, we use the set of
parameters producing the highest-likelihood sample in the Markov
chains; this need not be precisely the mode of the posterior distri-
bution, but should be adequate for the purpose of testing the fit. The
12 significance values (four tests for each of the three cluster sam-
ples) obtained through the procedure described here are displayed
in Table 10. None of the individual tests produced a sufficiently low
significance value (<0.01) to indicate an inadequacy in the model.
We note that if, for example, one test had produced a very small
significance, it would still need to be interpreted in the context of
the larger goodness-of-fit test; that is, the likelihood of randomly
obtaining one low significance value out of 12 would need to be
taken into account.

5.3 Extensions to the model

Although the minimal set of parameters produces an acceptable fit,
we can still investigate whether any of the extensions to the simple
model, summarized in Table 11, are preferred by the data. To do
this, we have performed additional analyses with each of the ex-
tension parameters individually free. The additional data described
in Section 2.4 were included in these analyses in order to constrain
the cosmology as much as possible, maximizing our sensitivity to
the scaling relations. For the parameters controlling evolution with
redshift, we choose the particular form of evolution ζ (z) = 1 + z in
equations (6) and (7); however, our conclusions are identical if the
other commonly chosen function, ζ (z) = E(z), is used.

The parameters controlling evolution in the marginal
temperature–mass scatter and the scatter correlation coefficient, σ ′

tm
and ρ ′

"tm, were not constrained within the allowed region (priors in
Table 11). The best-fitting temperature–mass scatter, σtm = 0.055,
is significantly smaller than the average measurement uncertainty
on t, ∼0.1, so the inability of the data to constrain evolution in the
scatter is perhaps not surprising. Similarly, constraining the scatter
correlation as a function of redshift would require many more data
points, so that the correlation in " and t at similar masses could
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YX vs. Mgas/fgas

solid = 1.48
expected = 5/3

Mantz et al 2010

slope = 1.095
expected = 1.25

Planck Collaboration (2011)
matched filter

Planck Collaboration: Planck early results: Statistical analysis of SZ scaling relations for X-ray galaxy clusters

Fig. 4. Left: Scaling relation between Planck SZ measurements and X-ray luminosity for ∼ 1600 MCXC clusters. Both quantities
are intrinsic and scaled assuming standard evolution. Individual measurements are shown by the black dots and the corresponding
bin averaged values by the red diamonds. Thick bars give the statistical errors, while the thin bars are bootstrap uncertainties. The
bin-averaged SZ cluster signal expected from the X-ray based model is shown by the blue stars. The combination of the adopted
D2A Y500 – M500 and L500 – M500 relations (Eq. 6) is shown by the dashed blue line while the red dot-dashed line shows the best
fitting power-law to the data (Eq. 7 and Table 4). Right: Ratio between data and model bin averaged values shown in the left panel.
Error bars are as in the left panel.

Table 4. Best fitting parameters for the observed D2A Y500 – L500 relation given in Eq. 7. Values are given for three different choices
of priors and as predicted from X-rays for comparison. Both total errors from bootstrap resampling and statistical errors are quoted.

Ŷ500,L [10−3 arcmin2] α̂L β̂L
0.451 ± 0.003 stat [±0.013 tot] 1.087 (fixed) 2/3 (fixed)

Planck +MCXC 0.447 ± 0.006 stat [±0.015 tot] 1.095 ± 0.008 stat [±0.025 tot] 2/3 (fixed)
0.476 ± 0.006 stat [±0.025 tot] 1.087 (fixed) −0.007 ± 0.154 stat [±0.518 tot]

X-ray prediction 0.428 1.09 2/3

Table 6. Best fitting parameters for the observed D2A Y500 – M500 relation given in Eq. 8. Values are given for three different choices
of priors and as predicted from X-rays for comparison. Both total errors from bootstrap resampling and statistical errors are quoted.

Ŷ500,M [10−3 arcmin2] α̂M β̂M
0.896 ± 0.007 stat [±0.027 tot] 1.783 (fixed) 2/3 (fixed)

Planck +MCXC 0.892 ± 0.008 stat [±0.025 tot] 1.796 ± 0.014 stat [±0.042 tot] 2/3 (fixed)
0.945 ± 0.012 stat [±0.049 tot] 1.783 (fixed) −0.007 ± 0.154 stat [±0.518 tot]

X-ray prediction 0.850 1.783 2/3

tion. Using the simplest model (Eq. 7 or equivalently Eq. 8) we
attempt to constrain the power law index β̂L (or equivalently β̂M).
We find that the measured SZ signal is consistent with standard
evolution (see Table 4) and our constrains on any evolution are
weak. Fig. 6 shows the measured and predicted, redshift binned,
SZ signal, the expected standard redshift evolution, and the best
fitting model. The figure shows that, althoughmeasurements and
predictions agree quite well, the best fitting model is constrained
primarily by the low redshift measurements. Possible future im-
provements are discussed below in Sect. 7.

5.3. Scatter in the D2A Y500 – L500 relation

As discussed in Sect. 4.2, we find a clear indication of intrinsic
scatter in our measurements of the D2A Y500 – L500 relation. In
this section we quantify this scatter and discuss how our mea-

surement compares with expectations based on the representa-
tive REXCESS sample (Arnaud et al. 2010) and the findings re-
ported in the companion paper Planck Collaboration (2011g).

The intrinsic scatter σintr is computed in luminosity bins
as the quadratic difference between the raw scatter σraw (see
Sect. 4.2) and the statistical scatter expected from the statis-
tical uncertainties, i.e. σ2intr = σ

2
raw − σ

2
stat. The latter is esti-

mated by averaging the statistical uncertainties in a given bin,
i.e. σ2stat = N−1

∑

σ2i , where N is the number of clusters in the
bin. For a given luminosity bin, the uncertainty∆σintr on the esti-
mated intrinsic scatter are evaluated by (∆σintr)2 = σ2intr(2N (N−
1))−1

∑

(1 + (σ2i /σ
2
intr))

2.
We find that intrinsic scatter can be measured only for

L500E(z)−7/3 ! 1044erg/s, being the statistical uncertainties at
lower luminosities of the order of the raw scatter (see also Sect.
4.2). In a given bin with average signal Y, the resulting fractional
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Self-Similar, Universal Model: Pressure

• Universal pressure profile
• outside the core, there appears

to be a universal pressure profile
• But study uses only z < 0.2 clusters,

what about redshift evolution?

13

M. Arnaud et al.: Pressure properties of the REXCESS

Fig. 1. The pressure profiles of the REXCESS sample. Pressures are
estimated at the effective radii of the temperature profile (points with
errors bars). A line connects the data points for each cluster to guide the
eye. The data are colour coded according to the spectroscopic tempera-
ture, TX (see color bar).

measured on a lower resolution radial grid than the density pro-
files, the pressure profiles, P(r) = ne(r)T (r), are estimated at the
weighted effective radii (Lewis et al. 2003) of each annular bin
of the 2D temperature profiles. They are presented in Fig. 1.

Since the sample contains systems in a variety of dynam-
ical states, we choose to use YX as a mass proxy rather than
the hydrostatic mass. Extensive discussion of how this could
affect our results is presented in Sect. 3.4. For each cluster,
M500 is estimated iteratively from the M500 − YX relation, as
described in Kravtsov et al. (2006). We used the updated cal-
ibration of the M500 − YX relation, obtained by combining the
Arnaud et al. (2007) data on nearby relaxed clusters observed
with XMM-Newton with new REXCESS data (Arnaud et al.,
in prep). The sample comprises 20 clusters: 8 clusters from
Arnaud et al. (2007), excluding the two lowest mass clusters
whose M500 estimate requires extrapolation, and the 12 relaxed
REXCESS clusters with mass profiles measured at least down to
δ = 550. The derived M500 − YX relation

h(z)2/5 M500 =

1014.567±0.010




YX

2 × 1014 h−5/2
70 M# keV




0.561±0.018

h−1
70 M# (2)

is consistent with the relation derived by Arnaud et al. (2007)
but with improved accuracy on slope and normalization.

The slope differs from that expected in the standard self-
similar model (α = 3/5) by only ∼2σ. We will thus also con-
sider the M500 − YX relation obtained by fixing the slope to its
standard value:

h(z)2/5 M500 = 1014.561±0.009

×



YX

2 × 1014 h−5/2
70 M# keV




3/5

h−1
70 M#. (3)

Fig. 2. The scaled pressure profiles of the REXCESS sample, colour
coded according to the (thermo)dynamical state (see labels and Sect. 2).
Black profiles denote clusters that are neither cool core nor morpholog-
ically disturbed. The radii are scaled to R500 and the pressure to P500
as defined in Eq. (5), with M500 estimated from the M500 − YX relation
(Eq. (2)). Full lines: measured pressure profile as in Fig. 1 with data
points omitted for clarity. Dotted lines: extrapolated pressure (see text).
The thick grey line is the average scaled profile and the grey area cor-
responds to the ±1σ dispersion around it. Middle panel: ratio of the
average profile of cool core (blue) and disturbed (red) systems to the
overall average profile. Bottom panel: the solid line is the statistical dis-
persion as a function of scaled radius. Dotted line: additional dispersion
expected from the intrinsic dispersion in the M500 − YX relation. Dash-
dotted line: quadratic sum of the two dispersions. Dashed line: disper-
sion obtained for M500 estimated from the standard slope M500 − YX re-
lation (Eq. (3)).

3. Scaled pressure profiles

3.1. Scaled profiles

The scaled pressure profiles

p(x) =
P(r)
P500

where x =
r

R500
(4)

are presented in Fig. 2. The pressure is normalised to the char-
acteristic pressure P500, reflecting the mass variation expected
in the standard self-similar model, purely based on gravitation
(Nagai et al. 2007, and Appendix A).

P500 = 1.65 × 10−3 h(z)8/3

×



M500

3 × 1014 h−1
70 M#




2/3

h2
70 keV cm−3 (5)
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average profile of cool core (blue) and disturbed (red) systems to the
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persion as a function of scaled radius. Dotted line: additional dispersion
expected from the intrinsic dispersion in the M500 − YX relation. Dash-
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sion obtained for M500 estimated from the standard slope M500 − YX re-
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Clusters as Cosmological Tools

• Scaling relations and universal pressure profile suggest clusters are 
“well-behaved” and close to self-similar expectations

• What can we do with them?
• Geometrical tests

• Angular diameter distance as function of z: 
‣ assume X-ray and SZ derived from same spherical plasma; different dependences on DA enable 

reconstruction of DA (e.g., Bonamente et al 2006)

‣ assume fgas is independent of z and use differing dependences of estimates for Mgas and Mtot on 
DA to estimate DA (e.g., Allen et al 2008)

• Growth function + volume element tests: indirect measurements of 
cosmo params Ωm, ΩΛ, equation of state parameter w 

• dN(>M)/dz as function of z: abundance of clusters above a mass threshold as function of 
z measures combination of growth function and volume element, 
present day value measures normalization of density fluct. PS, σ8

• dN/dM as function of z: variation in mass function with z measures growth function, 
present day value measures normalization of density fluct. PS, σ8

• SZ secondary anisotropy spectrum: ensemble of clusters over cosmic time 
• All need connection between M and an observable: scaling relations v. important

14
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• Vikhlinin et al 2009
• 49 z < 0.35 and 

37 0.55 < z < 0.90
clusters, quasi-mass-
limited sample selected
using ROSAT, followed
up with Chandra

• dN/dM vs. z, no evolution
of scaling relations

Cosmological Tests

15
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F��. 5.— Constraints for non-�at ΛCDM cosmology from evolution of
the cluster mass function. �e results using only the evolution information
(change in the number density of clusters between z = 0 and z ≈ 0.55) are
shown in blue and green from the Mgas and TX -based total mass estimates.
�e degeneracies in these cases are di�erent because these proxies result in
very di�erent distance-dependence of the estimated masses (see text for de-
tails). �e constraints from the YX -based mass function are between those
for Mgas and TX (Fig. 6). Adding the shape of the mass function information
breaks degeneracies with ΩM, signi�cantly improving constraints from Mgas
and YX with little e�ect on the TX results.

independent measurement of ΩM with almost no degeneracy
with ΩΛ : ΩM = 0.34 ± 0.08, in good agreement with the mass
function shape results (and also previousmeasurements based
on evolution of the cluster temperature function, see Henry
2004). In a �at ΛCDMmodel (the one withΩM+ΩΛ = 1), the
constraint is slightly tighter, ΩM = 0.30 ± 0.05.
Systematic uncertainties of theΩΛ measurements are domi-

nated by possible departures of evolution in theMtot vs. proxy
relations. �is issue is discussed in detail below in connec-
tion with the dark energy equation of state constraint (§ 8.4);
here we note only that the systematic uncertainties are approx-
imately 50% of the purely statistical errorbars on the dark en-
ergy parameters (ΩΛ , w). �erefore, our cluster data provide
a clear independent con�rmation for non-zero ΩΛ .

Comments on the role of geometric information in the cluster mass
function test— Cosmological constraints based on �tting the
cluster mass function generally use not only information from
growth of structure but also that from the distance-redshi� re-
lation because derivation of the high-z mass functions from
the data assumes the d(z) and E(z) functions. Quite gener-
ally, the estimated mass is a power law function of these de-
pendencies, M̃ ∝ d(z)β E(z)−ε . Di�erent mass proxies have
di�erent β and ε, and thus combine the geometric and growth
of structure information in di�erent ways and lead to di�er-
ent degeneracies in the derived cosmological parameters. We
�nd that strongly distance-dependent proxies (such as Mgas,
see Paper II) are intrinsically more powerful in constraining
the dark energy parameters (ΩΛ , w). By contrast, distance-
independent proxies such as TX result in poor sensitivity to
dark energy but instead better constrainΩM. �is is well illus-
trated by the results in Fig. 5.�eMgas based estimates forMtot
result (if we ignore the shape of themass function information)
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F��. 6.— Same as Fig. 5 but for YX -based mass estimates.

in degeneracy approximately along the line ΩM + ΩΛ = 1. In
fact, the evolution of the cluster mass functions derived from
Mgas can be made broadly consistent with theΩM ≈ 1,ΩΛ ≈ 0
cosmology if one allows for strong deviations from the CDM-
type initial power spectra (Nuza & Blanchard 2006). How-
ever, the mass functions estimated from the temperatures of
the same clusters are grossly inconsistent with such a cosmol-
ogy, irrespective of the assumptions on the initial power spec-
trum (ΩM = 1 is 8.3σ away from the best�t to the temperature-
based mass function, Fig. 5). It is encouraging that the 68%
CL regions for all three mass proxies overlap near the “concor-
dance” point at ΩM = 0.25 − 0.3 and ΩΛ = 0.7 − 0.75.
8. FLAT UNIVERSEWITH CONSTANT DARK ENERGY

EQUATION OF STATE: w0 −ΩX

Next, we study constraints on a constant dark energy equa-
tion of state,w0 ≡ pX�ρX , in a spatially �at universe.�e anal-
ysis using cluster data only is equivalent to the ΩM −ΩΛ case
(§ 7). We compute the likelihood for the cluster mass func-
tions on a grid of parameters: present dark energy density ΩX
(= 1−ΩM),w0, h, and σ8, then add the HST prior on the Hub-
ble constant (§ 4). Marginalization over non-essential parame-
ters, h and σ8, gives the likelihood as a function ofΩM andw0.
We also obtain the equation of state constraints combining our
cluster data with the three external cosmological data sets (fol-
lowing the reasoning of Dunkley et al. 2008, for the choice of
these datasets):

8.1. External Cosmological Datasets
SN Ia— We use the distancemoduli estimated for the Type Ia
supernovae from the HST sample of Riess et al. (2007), SNLS
survey (Astier et al. 2006), and ESSENCE survey (Wood-Vasey
et al. 2007), combined with the nearby supernova sample (we
used a combination of all these samples compiled by Davis
et al. 2007). Calculation of the SN Ia component of the like-
lihood function for the given cosmological model is standard
and can be found in any of the above references.
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F��. 3.— Constraints on the σ8 and ΩM parameters in a �at ΛCDM cosmol-
ogy from the total (both low and high-redshi�) cluster sample.�e inner solid
region corresponds to−2∆ ln L = 1 from the best-�t model (indicates the 68%
CL intervals for one interesting parameter, see footnote 13) and the solid con-
tour shows the one-parameter 95% CL region (−2∆ ln L = 4). �e dashed
contour shows how the inner solid con�dence region is modi�ed if the nor-
malization of the absolute cluster mass vs. observable relations is changed by+9% (our estimate of the systematic errors).

the relative number density of clusters near the high and low
mass ends of the sample. Since the volume is a fast-decreasing
function at low M’s, the V(M) variations are important. �e
most important parameter of the L −M relation in our case is
the power law slope, α (see eq. 20 in Paper II). Variations of α
within the errorbars (±0.14) of the best�t value lead to changes
in the derivedΩMh of±0.027. Adding this in quadrature to the
formal statistical errors quoted above, we obtain a total uncer-
tainty of ±0.035. We have veri�ed that other sources of sys-
tematics in the ΩMh determination are much less important
than those related to the L −M relation.
In principle, a non-zeromass of light neutrinos has some ef-

fect on the perturbation power spectrum at low redshi�s. We
checked, however, that their e�ect on the shape of the cluster
mass function is negligible for any ∑mν within the range al-
lowed by the CMB data (Komatsu et al. 2008).�erefore, neu-
trinos do not a�ect our results on ΩMh.
Our determination of ΩMh = 0.184 ± 0.035 compares well

with the previous measurements using cluster data and galaxy
power spectra. Of the previous cluster results especially note-
worthy is the work of Schuecker et al. (2003) whose constraints
are based not only on the shape of the mass function but also
on the clustering of low-z clusters. �eir value is ΩMh =
0.239 ± 0.056 (errors dominated by uncertainties in the con-
version of cluster X-ray luminosities into mass; this source of
uncertainty is avoided in our work by using high-quality X-
ray mass proxies). ΩMh is measured accurately also by galaxy
redshi� surveys. �e results from the 2dF and SDSS surveys
areΩMh = 0.178± 0.016 and 0.223± 0.023, respectively (Cole
et al. 2005; Tegmark et al. 2004, —we rescaled to n = 0.95 their
best �t values reported for n = 1). �e individual errorbars
in galaxy survey results are smaller than those from the clus-
ter data; however, a recent work by Percival et al. (2007c) sug-
gests that the previous galaxy redshi� results may be a�ected
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F��. 4.— Comparison with other σ8 measurements. Solid region is our 68%
CL region reproduced from Fig. 3 (this and all other con�dence regions corre-
spond to ∆χ2 = 1, see footnote 13 on page 7). Blue contours show theWMAP
3 and 5-year results from Spergel et al. (2007) and Dunkley et al. (2008) (dot-
ted and solid contours, respectively). For other measurements, we show the
general direction of degeneracy as a solid line and a 68% uncertainty in σ8 at a
representative value of ΩM . Filled circles show the weak lensing shear results
fromHoekstra et al. (2006) and Fu et al. (2008) (dashed and solid lines, respec-
tively). Open circle shows results from a cluster sample with galaxy dynamics
mass measurements (Rines et al. 2007). Finally, open square shows the results
from Reiprich & Böhringer (2002, approximately the lower bound of recently
published X-ray cluster measurements).

by scale-dependent biases on large scales. Indeed, there is a
tension between the SDSS and 2dF values at � 90% CL and the
di�erence is comparable to the errorbars of our measurement.
�e cluster results can be improved in the future by extend-

ing the range of the mass function measurements. Not only
can this improve statistical errors in the mass function mea-
surements but it can also improve the accuracy of the L−M re-
lation, a signi�cant source of uncertainty in our case. We note
that it ismore advantageous to increase statistics in the high-M
range than to extend the mass function into the galaxy group
regime. In addition to greater reliability of the X-raymass esti-
mates in the high-M systems, the surveys become dominated
by cosmic variance approximately below the lower mass cut in
our sample (the cosmic variance is estimated in §7.1 of Paper II
using the prescription of Hu & Kravtsov 2003).
Combined with the HST prior on the Hubble constant, our

constraint on ΩMh becomes a measurement for the matter
density parameter, ΩM = 0.255 ± 0.043 (stat) ±0.037 (sys),
where systematic errors are also dominated by the slope of
the L − M relation. �is agrees within the errors with other
independent determinations, such as a combination of BAO
and CMB acoustic scales, ΩM = 0.256 ± 0.027 (Percival et al.
2007b), and a combination of gas fraction measurements in
massive clusters with the average baryon density from Big
Bang Nucleosynthesis, ΩM = 0.28 ± 0.06 (Allen et al. 2008).
It also agrees with another independent measurement based
on our data, ΩM = 0.30 ± 0.05 from evolution of the cluster
temperature function, see (§ 7 below).

6. CONSTRAINTS FROM THE NORMALIZATION OF
THE CLUSTER MASS FUNCTION: σ8 −ΩM
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F��. 7.— Constraints on the present dark energy density ΩX and constant
equation of state parameter w0 derived from cluster mass function evolution
in a spatially �at Universe. �e results for Mgas and YX -based total mass esti-
mates are shown in red and blue, respectively.�e inner solid red region shows
the e�ect of adding the mass function shape information (§5) to the evolution
of the Mgas-based mass function.

be found in Hu & Jain (2004):

∆̃R ≈ σ8
1.79 × 104 �

Ωbh2

0.024
�1�3 �ΩMh2

0.14
�−0.563

× (7.808 h)(1−n)�2 � h
0.72
�−0.693 0.76

G0

(3)

(we adjusted numerical coe�cients to take into account that
the Hu & Jain approximation uses the CMB amplitude at k =
0.05 Mpc−1 while the WMAP-5 results are reported for k =
0.02 Mpc−1). In this equation, G0 is the perturbation growth
factor between the CMB redshi� and the present, normal-
ized to the growth function in the matter-dominated universe:
G(z) ≡ (1 + z) δ(z)�δ(zCMB). �is �tting formula helps to
understand the nature of the σ8 vs. CMB amplitude constraint.
�e relation between σ8 and ∆R depends on the absolute mat-
ter and baryon densities, ΩMh2 and Ωbh2 (well-measured by
the CMB data alone), and on the total growth factor, G0, and
the absolute value of the Hubble constant, h. Both of these
quantities provide powerful constraints on any parametriza-
tion of the dark energy equation of state (Hu 2005), and their
combination does so as well.
Inclusion of this information in the total likelihood is

straightforward. Given the usual set of cosmological param-
eters (ΩX , w0, h) plus σ8, one computes

χ2CMBnorm = (∆̃2
R × 109 − 2.21)2�0.092, (4)

where ∆̃R can be obtained either from eq.[3] or as described in
Komatsu et al. (2008).�e χ2CMBnorm component is then added
to the cluster χ2 and the sum marginalized over σ8.

8.2. w0 from Cluster Data Only
Constraints on the present dark energy densityΩX and con-

stant equation of state are presented in Fig. 7. For compar-
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F��. 8.— Comparison of the dark energy constraints from X-ray clusters and
from other individual methods (supernovae, baryonic acoustic oscillations,
and WMAP).

ison, we show separately the results derived only from evo-
lution of the Mgas and YX-based mass functions, and the ef-
fect of including the mass function shape information (§ 7 de-
scribes the procedure for removing shape information from
the cluster likelihood function). We do not consider here the
TX based mass estimates because they provide little sensitivity
to the dark energy parameters (§ 7). Just like in the ΩM − ΩΛ
case, evolution of theMgas and YX-based mass functions con-
strains di�erent combinations ofw0 and ΩX . �e width of the
con�dence regions across the degeneracy direction is similar
but the gas-based results are less inclined giving a little more
sensitivity tow0 for a�xed dark energy density—∆w0 = ±0.17
from the Mgas-based functions and ∆w0 = ±0.26 from YX .
Adding the mass function information combined with the

HST prior on h breaks the degeneracy along theΩX direction.
For example, the ellipse in Fig. 7 shows the 68%CL region from
�tting both the evolution and shape of the Mgas-based mass
function. �e one-parameter con�dence intervals in this case
areΩX = 0.75±0.04 andw0 = −1.14±0.21.�ese results com-
pare favorably with those from other individual methods —
supernovae, BAO, WMAP (Fig. 8), although the supernovae
and CMB data provide tighter constraints on w0 for a �xed
ΩX .�e real strength of the cluster data is, however, when they
are combined with the CMB and other cosmological datasets.
�e combined constraints are very similar for theMgas andYX-
based clustermass functions, and therefore we discuss only the
former herea�er.

8.3. w0 from the Combination of Clusters with Other Data
First, we consider a combination of the cluster data with

the WMAP distance priors (see § 5.4 in Komatsu et al. 2008).
Cluster data bring information on growth of density pertur-
bations and normalized distances in the z � 0.0 − 0.9 inter-
val, and — weakly — on the ΩMh parameter. Adding this in-
formation reduces the WMAP-only uncertainties on w0 and
ΩX approximately by a factor of 2 (dark blue region in Fig. 9):
w0 = −1.08 ± 0.15, ΩX = 0.76 ± 0.04.
A much more signi�cant improvement of the constraints
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F��. 2.— Illustration of sensitivity of the cluster mass function to the cosmological model. In the le� panel, we show the measured mass function and predicted
models (with only the overall normalization at z = 0 adjusted) computed for a cosmologywhich is close to our best-�tmodel.�e low-zmass function is reproduced
from Fig. 1, which for the high-z cluster we show only the most distant subsample (z > 0.55) to better illustrate the e�ects. In the right panel, both the data and the
models are computed for a cosmology with ΩΛ = 0. Both the model and the data at high redshi�s are changed relative to the ΩΛ = 0.75 case. �e measured mass
function is changed because it is derived for a di�erent distance-redshi� relation.�e model is changed because the predicted growth of structure and overdensity
thresholds corresponding to ∆crit = 500 are di�erent. When the overall model normalization is adjusted to the low-zmass function, the predicted number density
of z > 0.55 clusters is in strong disagreement with the data, and therefore this combination of ΩM and ΩΛ can be rejected.

of interest in our study; at this level, the theoretical uncertain-
ties in the mass function do not contribute signi�cantly to the
systematic error budget. Although the formula has been cali-
brated using dissipationless N-body simulations (i.e. without
e�ects of baryons), the expected e�ect of the internal redistri-
bution of mass during baryon dissipation on halo mass func-
tion are expected to be < 5% (Rudd et al. 2008) for a realistic
fraction of baryons that condenses to form galaxies.
Similarly to Jenkins et al. (2001) andWarren et al. (2006), the

Tinker et al. formulas for the halo mass function are presented
as a function of variance of the density �eld on amass scaleM.
�e variance, in turn, depends on the linear power spectrumof
the cosmologicalmodel, P(k), whichwe calculate as a product
of the initial power law spectrum, kn , and the transfer func-
tion for the given mixture of CDM and baryons, computed
using the analytic approximations of Eisenstein & Hu (1999).
�is analytic approximation is accurate to better than 2% for
a wide range of cosmologies, including cosmologies with non-
negligible neutrino contributions to the total matter density.
Our default analysis assumes that neutrinos have a negligi-

bly small mass.�e only component of our analysis that could
be a�ected by this assumption is when we contrast the low-
redshi� value of σ8 derived from clusters with the CMB power
spectrum normalization. �is comparison uses evolution of
purely CDM+baryons power spectra. �e presence of light
neutrinos a�ects the power spectrum at cluster scales; in terms
of σ8, the e�ect is roughly proportional to the total neutrino
density, and is ≈ 20% for ∑mν = 0.5 eV (we calculate the ef-
fect of neutrinos using the transfer function model of Eisen-
stein & Hu 1999). Stringent upper limits on the neutrino mass
were reported from comparison of theWMAP and Ly-α forest
data,∑mν < 0.17 eV at 95%CL (Seljak et al. 2006). If neutrino
masses are indeed this low, they would have no e�ect on our
analysis. However, possible issues with modeling of the Ly-α
data have been noted in the literature (see, e.g., discussion in

§ 4.2.8 of Dunkley et al. 2008) and so we experiment also with
neutrino masses outside the Ly-α forest bounds (§ 8.5).

4. FITTING PROCEDURE
We obtain parameter constraints using the likelihood func-

tion computed on a full grid of cosmological parameters a�ect-
ing cluster observables (and also those for external datasets).
�e relevant parameters for the cluster data are those that a�ect
the distance-redshi� relation, as well as the growth and power
spectrumof linear density perturbations: ΩM,ΩΛ ,w (dark en-
ergy equation of state parameter), σ8 (linear amplitude of den-
sity perturbations at the 8 h−1 Mpc scale at z = 0), h, tilt of the
primordial �uctuations power spectrum, and potentially, the
non-zero rest mass of light neutrinos. �is is computationally
demanding and we describe our approach below.
�e computation of the likelihood function for a single com-

bination of parameters is relatively straightforward. Our pro-
cedure (described in Paper II) uses the full information con-
tained in the dataset, without any binning in mass or redshi�,
takes into account the scatter in the Mtot vs. proxy relations
and measurement errors, and so on. We should note, how-
ever, that since the measurement of the Mgas and YX proxies
depends on the assumed distance to the cluster, themass func-
tions must be re-derived for each new combination of the cos-
mological parameters that a�ect the distance-redshi� relation
— ΩM, w, ΩΛ , etc. Variations of h lead to trivial rescalings of
the mass function and do not require re-computing the mass
estimates. Computation of the survey volume uses a model for
the evolving LX −Mtot relation (see § 5 in Paper II), which is
measured internally from the data and thus also depends on
the assumed d(z) function. �erefore, we re�t the LX −Mtot
relation for each new cosmology and recompute V(M). Sen-
sitivity of the derived mass function to the background cos-
mology is illustrated in Fig. 2. �e entire procedure, although
equivalent to full reanalysis of the Chandra and ROSAT data,
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Figure 3. Joint 68.3 and 95.4 per cent confidence regions for parameters of the constant w model. Left: constraints on !m and w from the XLF (purple,
including all systematic allowances in Table 1) are compared with those from cluster fgas data (red; A08, including conservative systematic allowances); 5-yr
WMAP data (blue; Dunkley et al. 2009, marginalized over the SZ signal); SNIa data (green; Kowalski et al. 2008, including their treatment of systematics);
and BAO observations, (brown; Percival et al. 2007, also using our standard priors on h and !bh2). Results from combining these five data sets are shown in
gold. Right: constraints on σ8 and w from XLF and WMAP5 data. The combination of the XLF and WMAP5 yields the grey contours; adding the other data
listed above produces the gold contours.

Figure 4. Joint 68.3 and 95.4 per cent confidence regions for parameters of
the constant w model, including conservative systematic allowances. Purple
contours indicate constraints from the XLF (which includes six z < 0.15 fgas
clusters; see Sections 2 and 4.3), while constraints from all 42 fgas clusters
alone are shown in red. Results combining the XLF data with all 42 fgas
clusters appear in green. The combination of these two types of cluster data
with standard priors on h and !bh2 yields a competitive constraint on dark
energy, w = −1.06 ± 0.15.

wet = −1.05+0.20
−0.36 from the combination of all the data (Fig. 6). These

results are a significant improvement over previous constraints on
this model from the combination of fgas, CMB and SNIa data (w0 =
−1.05+0.31

−0.26, wet = −0.83+0.48
−0.43; A08).

Adding spatial curvature as a free parameter and fixing the tran-
sition redshift to 1 (equation 1), we obtain constraints equivalent to[
σ (wp)σ (wa)

]−1 = 15.5, using the notation and definitions of the
Dark Energy Task Force (DETF; Albrecht et al. 2006).

6 IN V E S T I G AT I O N O F SY S T E M AT I C S

6.1 Sensitivity to priors

Our analysis of the XLF data alone includes priors to constrain
the Hubble parameter and mean baryon density, and to marginalize
over systematic allowances on the mass function, cluster sample

completeness and cluster gas mass fraction (Table 1). To investigate
the influence of each prior individually, we importance sampled the
Markov chains produced in the XLF analysis for the constant w

model, reducing the width of each prior in turn by a factor of 2.
If importance sampling a particular prior in this way changes the
posterior distribution for parameters of interest, we can conclude
that the prior is influential.

Of the priors listed above, only the systematic allowances asso-
ciated with the determination of fgas are significant. Since the gas
mass fraction determines the overall mass scale when Mgas is used
as a proxy for total mass, its systematic uncertainty affects primarily
the constraints on !m and σ8, as shown in Fig. 7. Following A08,
our standard analysis uses conservative systematic allowances for
Chandra calibration (10 per cent), non-thermal pressure support
(10 per cent), the depletion of baryons in clusters with respect to the
cosmic mean (20 per cent) and evolution with redshift in the baryon
fraction and stellar content of clusters (10 and 20 per cent). The
most significant ones for this work are on the depletion of baryons
in clusters, which determines the width of the !m constraint, and the
amount of non-thermal pressure and overall calibration of Chandra
for temperature measurements, which determine the constraint on
σ8 at fixed !m.

In contrast, none of the priors affects the constraint on w signifi-
cantly. This was confirmed by an additional analysis in which all of
the systematic uncertainties were eliminated, i.e. every nuisance pa-
rameter was fixed rather than being marginalized over. Ordinarily,
this would indicate that our constraints on dark energy are statisti-
cally limited, and this may plausibly be the case; however, we note
that our constraints may also be limited by the fact that the effect
of dark energy perturbations on the mass function is not yet under-
stood. If these perturbations produce changes in the high-mass tail
of the mass function at the few tens of per cent level, there may be
additional constraining power available from the current XLF data.

6.2 Choice of mass function

In our standard analysis, we have used the mass function of
Tinker et al. (2008) with cluster radius defined by an overden-
sity of 300!m(z). One could also justify using the mass func-
tion determined at a cluster radius closer to the radius where the

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 406, 1759–1772
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Figure 1. Left: joint 68.3 and 95.4 per cent confidence regions for parameters of the !CDM cosmology from the BCS (blue), REFLEX (green) and Bright
MACS (red) cluster samples individually, including all systematic allowances in Table 1. Note that only the 95.4 per cent confidence regions are visible for
BCS and REFLEX. Right: constraints from the full XLF data set (purple) and 5-yr WMAP data (blue; Dunkley et al. 2009, marginalized over the SZ signal).
Results from the combination of the XLF and WMAP5 data are shown in grey.

mass measurements, which significantly degraded constraints on the
scaling relation and its intrinsic scatter, resulting in a corresponding
degradation in cosmological constraints.

This work avoids this issue by using gas mass as a proxy for total
mass (see details in Paper II). Unlike total mass, gas mass can be
measured from X-ray data with very little bias. The relation between
gas mass and total mass is provided by A08; ultimately, the cluster
mass scale is set using the hydrostatic method for the clusters in that
work, i.e. the class of hot, dynamically relaxed clusters for which
the bias due to non-thermal pressure is minimal.

(ii) Follow-up data over a range of redshifts. The statistical meth-
ods employed in M08 lack the internal consistency of our new pro-
cedure (Section 4.1), making it impossible to rigorously incorporate
follow-up data at redshifts much greater than zero.17 As a result, we
could not directly constrain the evolution of the scaling relations,
and instead marginalized over a range of possibilities, using con-
servative priors. With our new method, follow-up data spanning the
full redshift range of cluster detections can be included, allowing
evolution in the scaling relations to be tested directly (Paper II).
Relatedly, the distribution of follow-up data over a range in redshift
improves the constraints on the dark energy equation of state.

(iii) Use of fgas data. As discussed by Vikhlinin et al. (2009b),
the method used to estimate masses has an effect on the constraints
obtained because different mass proxies have different dependen-
cies on distance, with gas mass (Mgas ∝ d 2.5) being more sensitive
than temperature or YX . Our results are therefore sensitive to this
choice at some level.

Another way to look at this is to notice that the A08 data that
we use to constrain fgas inherently contain information about "m

in addition (given a bound on the baryonic depletion of clusters).
Thus, our results on "m are primarily, though not entirely, driven
by these fgas data. With the value of fgas constrained, the XLF data
then determine σ8 and w. Note that, as mentioned in Section 2, we
use only six clusters from A08 at redshifts z < 0.15; due to this
redshift restriction, these fgas data do not produce a constraint on w

by themselves.

17In detail, the follow-up data were restricted to low redshifts (z < 0.11)
where the HIFLUGCS discovery space was large, i.e. where many clusters
were found well above the flux limit. This procedure reduces the biasing
effects of flux selection, although it does not eliminate them.

Although it is not stated explicitly above, we emphasize that the
new statistical method outlined in this section is ultimately the most
important advantage over M08, since the improvements in follow-
up data and mass determination cannot be fully or fairly exploited
without it.

5 R ESULTS

5.1 Constraints on the !CDM model

For a spatially flat, cosmological constant (w = −1) model, the
joint constraints on "m and σ8 obtained from the BCS, REFLEX
and Bright MACS cluster samples individually are displayed in the
left panel of Fig. 1. Results from combining the three samples appear
as purple contours in the right panel; the constraints, marginalized
over the systematic allowances listed in Table 1, are "m = 0.23 ±
0.04 and σ8 = 0.82 ± 0.05 (Table 2). These results agree well with
the tight constraints obtained from WMAP5 data (Dunkley et al.
2009) for this model (blue contours in the right panel). Results
from the combination of WMAP5 and the XLF (grey contours) are
somewhat improved: "m = 0.26 ± 0.02 and σ8 = 0.80 ± 0.02.
Our XLF results are in agreement with recent estimates based on
other X-ray selected (Henry et al. 2009; Vikhlinin et al. 2009b) and
optically selected (Rozo et al. 2010) cluster samples, and a variety
of independent cosmological data (Percival et al. 2007, 2010; A08;
Fu et al. 2008; Ho et al. 2008; Kowalski et al. 2008; Hicken et al.
2009; Reid et al. 2010, see also references in M08).

As mentioned in Section 3.1, the scalar spectral index, ns, is fixed
at 0.95 in our analysis of the XLF data alone. The only parameter
that is significantly degenerate with ns is σ8; our results for values
of ns other than 0.95 can be adequately described by shifting the σ8

constraints along the linear relation σ8 = 0.82 + 0.25(ns − 0.95).
The marginalized posterior distribution for "m obtained from

the XLF data is compared with those obtained from the analysis of
WMAP5, fgas (A08), SNIa (Kowalski et al. 2008) and BAO (Percival
et al. 2007, also using our standard priors on h and "bh2) data in
Fig. 2. The agreement among all the data sets is good, though note
that the XLF and fgas results are not independent (Sections 2 and
4.3).

In Paper II, we show that this simple cosmological model (and the
simple scaling relation model of Section 3.3) provides an acceptable
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Figure 3. Joint 68.3 and 95.4 per cent confidence regions for parameters of the constant w model. Left: constraints on !m and w from the XLF (purple,
including all systematic allowances in Table 1) are compared with those from cluster fgas data (red; A08, including conservative systematic allowances); 5-yr
WMAP data (blue; Dunkley et al. 2009, marginalized over the SZ signal); SNIa data (green; Kowalski et al. 2008, including their treatment of systematics);
and BAO observations, (brown; Percival et al. 2007, also using our standard priors on h and !bh2). Results from combining these five data sets are shown in
gold. Right: constraints on σ8 and w from XLF and WMAP5 data. The combination of the XLF and WMAP5 yields the grey contours; adding the other data
listed above produces the gold contours.

Figure 4. Joint 68.3 and 95.4 per cent confidence regions for parameters of
the constant w model, including conservative systematic allowances. Purple
contours indicate constraints from the XLF (which includes six z < 0.15 fgas
clusters; see Sections 2 and 4.3), while constraints from all 42 fgas clusters
alone are shown in red. Results combining the XLF data with all 42 fgas
clusters appear in green. The combination of these two types of cluster data
with standard priors on h and !bh2 yields a competitive constraint on dark
energy, w = −1.06 ± 0.15.

wet = −1.05+0.20
−0.36 from the combination of all the data (Fig. 6). These

results are a significant improvement over previous constraints on
this model from the combination of fgas, CMB and SNIa data (w0 =
−1.05+0.31

−0.26, wet = −0.83+0.48
−0.43; A08).

Adding spatial curvature as a free parameter and fixing the tran-
sition redshift to 1 (equation 1), we obtain constraints equivalent to[
σ (wp)σ (wa)

]−1 = 15.5, using the notation and definitions of the
Dark Energy Task Force (DETF; Albrecht et al. 2006).

6 IN V E S T I G AT I O N O F SY S T E M AT I C S

6.1 Sensitivity to priors

Our analysis of the XLF data alone includes priors to constrain
the Hubble parameter and mean baryon density, and to marginalize
over systematic allowances on the mass function, cluster sample

completeness and cluster gas mass fraction (Table 1). To investigate
the influence of each prior individually, we importance sampled the
Markov chains produced in the XLF analysis for the constant w

model, reducing the width of each prior in turn by a factor of 2.
If importance sampling a particular prior in this way changes the
posterior distribution for parameters of interest, we can conclude
that the prior is influential.

Of the priors listed above, only the systematic allowances asso-
ciated with the determination of fgas are significant. Since the gas
mass fraction determines the overall mass scale when Mgas is used
as a proxy for total mass, its systematic uncertainty affects primarily
the constraints on !m and σ8, as shown in Fig. 7. Following A08,
our standard analysis uses conservative systematic allowances for
Chandra calibration (10 per cent), non-thermal pressure support
(10 per cent), the depletion of baryons in clusters with respect to the
cosmic mean (20 per cent) and evolution with redshift in the baryon
fraction and stellar content of clusters (10 and 20 per cent). The
most significant ones for this work are on the depletion of baryons
in clusters, which determines the width of the !m constraint, and the
amount of non-thermal pressure and overall calibration of Chandra
for temperature measurements, which determine the constraint on
σ8 at fixed !m.

In contrast, none of the priors affects the constraint on w signifi-
cantly. This was confirmed by an additional analysis in which all of
the systematic uncertainties were eliminated, i.e. every nuisance pa-
rameter was fixed rather than being marginalized over. Ordinarily,
this would indicate that our constraints on dark energy are statisti-
cally limited, and this may plausibly be the case; however, we note
that our constraints may also be limited by the fact that the effect
of dark energy perturbations on the mass function is not yet under-
stood. If these perturbations produce changes in the high-mass tail
of the mass function at the few tens of per cent level, there may be
additional constraining power available from the current XLF data.

6.2 Choice of mass function

In our standard analysis, we have used the mass function of
Tinker et al. (2008) with cluster radius defined by an overden-
sity of 300!m(z). One could also justify using the mass func-
tion determined at a cluster radius closer to the radius where the
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Figure 5. Joint 68.3 and 95.4 per cent confidence regions, including conservative systematic allowances, for parameters of the evolving w models. Left:
constraints on the (w0, wa) model (equation 1) from the combination of XLF and 5-yr WMAP data are shown in grey, as well as the combination of XLF,
WMAP5 (Dunkley et al. 2009), cluster fgas (A08), SNIa (Kowalski et al. 2008) and BAO (Percival et al. 2007) data (gold). Right: constraints on the (w0, wet)
model (equation 2). The transition scalefactor is marginalized over the range 0.5 < at < 0.95. Crosses in each panel indicate the !CDM model, with constant
w = −1.

Figure 6. Joint 68.3 and 95.4 per cent confidence regions from the com-
bination of XLF, fgas, WMAP5, SNIa and BAO data, including systematic
uncertainties, for parameters of the (w0, wet) model (equation 2). The results
are the same as in the right panel of Fig. 5, but with both w0 (green contours)
and wet (blue) shown on the y-axis, against the dark energy density, "DE, on
the x-axis. The transition scalefactor is marginalized over the range 0.5 <

at < 0.95. The horizontal, dotted line indicates the cosmological constant
model (w0 = wet = −1).

follow-up mass measurements are made, r500. We therefore repeated
the XLF analysis using the mass function given by Tinker et al. for
overdensity 1600"m(z). For "m values of 0.2–0.3 and z < 0.5, this
corresponds to overdensities of 300–1000, compared to 50–200
for 300"m(z). Our results with this alternative mass function were
virtually identical to the standard results.

Similarly, we repeated the analysis using the older mass function
of Jenkins et al. (2001) at overdensity 324"m(z). Here we used a
20 per cent Gaussian systematic allowance on only the normaliza-
tion of the mass function and fixed the shape, as in M08. Again,
the cosmological results were essentially identical to our standard
results, despite the fact that the Jenkins function does not include
evolution with redshift, while the Tinker function does. This indif-
ference to the details of the mass function is consistent with the
observation in Section 6.1 that the current results are insensitive to
the systematic allowances on the mass function and its evolution.

Figure 7. Joint 68.3 and 95.4 per cent confidence regions for "m and σ8 in
the constant w model from the XLF data, including the standard systematic
allowances in Table 1, are shown in purple. The blue contours result from
reducing the width of all of the allowances associated with the fgas model of
A08 by a factor of 2. The figure demonstrates that our results on "m and σ8
are limited by the systematic uncertainty in fgas. (These allowances have no
effect on the w constraint.) Improvements in hydrodynamical simulations
and the incorporation of gravitational lensing mass measurements offer
the possibility of significantly reducing the uncertainty in fgas, and thus
improving the constraints.

6.3 Note on Chandra calibration

A major, recent (2009 January 21) update to the Chandra ACIS
effective area at soft energies is accounted for in our analysis of
follow-up Chandra observations for the XLF data (see Paper II).
However, the raw data analysis in A08 predates this calibration up-
date, which in our tests typically results in an increase in the inferred
gas fraction of ∼10 per cent. We have accounted for this correction
by shifting the centre of the ‘Chandra calibration’ nuisance param-
eter in the A08 model such that the preferred value of fgas increases
correspondingly by 10 per cent. The Gaussian prior on this param-
eter also has a width of 10 per cent, so this systematic allowance
encompasses both the old value and the new value expected from
the calibration update.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 406, 1759–1772
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Cosmological Tests

• dN/dZ from SZ-selected surveys
• SPT: 21 clusters detected

(2008 data only)
• ACT: 23 clusters selected

(2008 data only), no dN/dz plot
• Cosmological constraints

limited by uncertainty in
scaling relation between signal
and mass; 10% error in mass limit,
same size as statistical uncertainty 
for current data set
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Figure 4. SPT catalog, binned into three redshift bins (z = 0.1–0.5, 0.5–0.9,
0.9–1.3), with number counts derived from 100 randomly selected points in the
WMAP7 wCDM MCMC chain overplotted. The SPT data are well covered by
the chain and provide improved constraining power. The unconfirmed candidate
is not included in this plot, and the binning is much coarser for display purposes
than that used in the likelihood calculation (Section 5.1).

not a significant source of error in this analysis: recovered
parameter values and uncertainties (Section 5.3) are found to
be insignificantly affected by widely varying priors on C.

5.3. Cosmological Parameter Constraints

The resulting constraints on σ8 and w are given for all chains
in Table 2. The parameter best constrained by the SPT cluster
catalog is σ8. CMB power spectrum measurements alone have a
large degeneracy between the dark energy equation of state,
w, and σ8. Figure 5 shows this degeneracy, along with the
added constraints from the SPT cluster catalog. Including the
cluster results tightens the σ8 contours and leads to an improved
constraint on w. This is a growth-based determination of the
dark energy equation of state, and is therefore complementary
to dark energy measurements based on distances, such as those
based on SNe and BAO.

Table 2
Cosmological Parameter Constraints

Chain σ8 w

ΛCDM WMAP7 0.801 ± 0.030 −1
ΛCDM WMAP7+SPT 0.791 ± 0.027 −1
ΛCDM CMBall 0.794 ± 0.029 −1
ΛCDM CMBall+SPT 0.788 ± 0.026 −1
wCDM WMAP7 0.832 ± 0.134 −1.118 ± 0.394
wCDM WMAP7+SPT 0.810 ± 0.090 −1.066 ± 0.288
wCDM WMAP7+BAO+SNe 0.802 ± 0.038 −0.980 ± 0.053
wCDM WMAP7+BAO+SNe+SPT 0.790 ± 0.034 −0.968 ± 0.049

Notes. Mean values and symmetrized 1σ range for σ8 and w, as found from
each of the four data sets considered, shown with and without the weighting by
likelihoods derived from the SPT cluster catalog. The parameter best constrained
by the SPT cluster catalog is σ8. CMB power spectrum measurements alone
have a large degeneracy between the dark energy equation of state, w, and σ8.
Adding the SPT cluster catalog breaks this degeneracy and leads to an improved
constraint on w. The SPT catalog has negligible effect on other parameters in
these chains (Ωbh

2, Ωch
2, H0, τ , and ns).

When combined with the wCDM WMAP7 chain, the SPT data
provide roughly a factor of 1.5 improvement in the precision of
σ8 and w, finding 0.81 ± 0.09 and −1.07 ± 0.29, respectively.
Including data from BAO and SNe, these constraints tighten to
σ8 = 0.79 ± 0.03 and w = −0.97 ± 0.05.

The dominant sources of uncertainty limiting these con-
straints are the Poisson error due to the relatively modest size
of the current catalog and the uncertainty in the normalization
A of the mass scaling relation. With weak-lensing- and X-ray-
derived mass estimates of SPT clusters, along with an order
of magnitude larger sample expected from the full survey, cos-
mological constraints from the SPT galaxy cluster survey will
markedly improve.

5.4. Amplitude of the SZ Effect

The value of the normalization parameter A (which can be
thought of as an “SZ amplitude”) preferred by the likelihood
analysis was found to be lower than the fiducial value, as shown
in Figure 6. The prior assumed on this parameter is sufficiently

Figure 5. Likelihood contour plot of w vs. σ8 showing 1σ and 2σ contours for several data sets. The left panel shows the constraints from WMAP7 alone (blue) and
with the SPT cluster catalog included (red). The right panel shows show the full cosmological data set of WMAP7+SN+BAO (blue), and this plus the SPT catalog
(red). The ability to constrain cosmological parameters is severely impacted by the uncertainties in the mass scaling relation, though some increase in precision is still
evident.
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When combined with the wCDM WMAP7 chain, the SPT data
provide roughly a factor of 1.5 improvement in the precision of
σ8 and w, finding 0.81 ± 0.09 and −1.07 ± 0.29, respectively.
Including data from BAO and SNe, these constraints tighten to
σ8 = 0.79 ± 0.03 and w = −0.97 ± 0.05.

The dominant sources of uncertainty limiting these con-
straints are the Poisson error due to the relatively modest size
of the current catalog and the uncertainty in the normalization
A of the mass scaling relation. With weak-lensing- and X-ray-
derived mass estimates of SPT clusters, along with an order
of magnitude larger sample expected from the full survey, cos-
mological constraints from the SPT galaxy cluster survey will
markedly improve.

5.4. Amplitude of the SZ Effect

The value of the normalization parameter A (which can be
thought of as an “SZ amplitude”) preferred by the likelihood
analysis was found to be lower than the fiducial value, as shown
in Figure 6. The prior assumed on this parameter is sufficiently

Figure 5. Likelihood contour plot of w vs. σ8 showing 1σ and 2σ contours for several data sets. The left panel shows the constraints from WMAP7 alone (blue) and
with the SPT cluster catalog included (red). The right panel shows show the full cosmological data set of WMAP7+SN+BAO (blue), and this plus the SPT catalog
(red). The ability to constrain cosmological parameters is severely impacted by the uncertainties in the mass scaling relation, though some increase in precision is still
evident.
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Figure 6. Degeneracy between σ8 and SZ scaling relation amplitude A, plotted
without prior (green) and with a 30% Gaussian prior (red) on A, for the ΛCDM
WMAP5+CMBall MCMC chain. The Gaussian prior is shown (±1σ ) by the
gray band, with the fiducial relation amplitude shown by the blue line. This
figure is analogous to Figure 9 of L10, although that work dealt with SZ power,
which is roughly proportional to the square of the amplitude being considered
here. The prior is slightly higher than the preferred value; these results suggest
that simulations may overestimate the SZ flux in the high-mass, high-redshift
systems contained in this catalog.

large that it is not a highly significant shift; however, in light
of the recent report by L10 of lower-than-expected SZ flux,
it is worth addressing. The SPT cluster catalog results are
complementary to the results of the power spectrum analysis, in
that the majority of the SZ power at the angular scales probed
by L10 comes from clusters below the mass threshold of the
cluster catalog.

Figure 6 shows that the amplitude A is strongly degenerate
with σ8. The constraints provided by the SPT cluster catalog
indicate either a value of σ8 that is at the low end of the CMB-
allowed distribution (or equivalently an erroneously high mass
function normalization), or an overprediction of SZ flux by
the fiducial simulations. If the fiducial amplitude is assumed,
the best-fit σ8 drops from the WMAP5+CMBall value of
0.794 ± 0.029 to 0.775 ± 0.015. This value is anomalously
low compared to recent results (e.g., Vikhlinin et al. 2009;
Mantz et al. 2010), and in slight tension with the results of
the power spectrum analysis of L10, where a still lower value
of σ8 = 0.746 ± 0.017 was obtained for similar simulation
models.26 The SZ amplitude parameter used in L10, Asz, is
roughly analogous to A2 in the current notation. When including
the expected contribution from homogeneous reionization, L10
found Asz = 0.42 ± 0.21, in mild tension (at the ∼1σ level)
with the marginalized value of (A/Afid)2 = 0.79 ± 0.30 found
in this analysis.

The fiducial simulations in this work use the semianalytic
gas model of Bode et al. (2007, 2009), which is calibrated
against low-redshift (z < 0.25) X-ray observations but has
not previously been compared to higher-redshift systems. One
interpretation of these results is that this model may overpredict
the thermal electron pressure in high-redshift (z > 0.3) systems;
this is not in conflict with the low-redshift calibration of the
model and suggests a weaker redshift evolution in the SZ signal
than predicted by the model. Alternately, a combination of mass

26 The fiducial thermal SZ simulation model used in this paper predicts a
power spectrum that is in very close agreement with the fiducial model of L10,
which was measured from the simulations of Sehgal et al. (2010).

function normalization and point-source contamination could
potentially account for the difference.

6. SOURCES OF SYSTEMATIC UNCERTAINTIES

There are several systematic effects that might affect the
utility of the SPT cluster sample. For example, there remains
large uncertainty in the mapping between detection significance
and cluster mass. It is also possible that strong correlations
(or anti-correlations) between galaxy clusters and millimeter-
bright point sources are significant. We address these issues in
this section.

6.1. Relation between SZ Signal and Mass

Theoretical arguments (Barbosa et al. 1996; Holder &
Carlstrom 2001; Motl et al. 2005) suggest that the SZ flux of
galaxy clusters is relatively well understood. However, there is
very little high-precision empirical evidence to confirm these
arguments, and there are physical mechanisms that could lead
to suppressed SZ flux, such as non-thermal pressure support
from turbulence (Lau et al. 2009) or non-equilibrium between
protons and electrons (Fox & Loeb 1997; Rudd & Nagai 2009).

Cluster SZ mass proxies (such as Y and y0, the integrated
SZ flux and amplitude of the SZ decrement, respectively)
depend linearly on the gas fraction and the gas temperature.
There remain theoretical and observational uncertainties in both
of these quantities. Estimates of gas fractions for individual
clusters can disagree by nearly 20% (e.g., Allen et al. 2008;
Vikhlinin et al. 2006), while theoretical and observed estimates
of the mass–temperature relation currently agree at the level of
10%–20% (Nagai et al. 2007). Adding these in quadrature leads
to uncertainties slightly below our assumed prior uncertainty of
30%.

With the number counts as a function of mass, dN/d ln M ,
scaling as M−2 or M−3 for typical SPT clusters (Shaw et al.
2010a), a 10% offset in mass would lead to a 20%–30%
shift in the number of galaxy clusters. With a catalog of 22
clusters, counting statistics lead to an uncertainty of at least
20%. Therefore, systematic offsets in the mass scale of order
10% will have a significant effect on cosmological constraints,
and the current 30% prior on A will dominate Poisson errors.

A follow-up campaign using optical and X-ray observations
will buttress our current theory/simulation-driven understanding
of the SPT SZ-selected galaxy cluster catalog.

6.2. Clusters Obscured by Point Sources

The sky density of bright point sources at 150 GHz is low
enough—on the order of 1 deg−2 (Vieira et al. 2010)—that the
probability of a galaxy cluster being missed due to a chance
superposition with a bright source is negligible. However,
sources associated with clusters will preferentially fill in cluster
SZ decrements. Characterizing the contamination of cluster SZ
measurements by member galaxies will be necessary to realize
the full potential of the upcoming much larger SPT cluster
catalog, but the systematic uncertainty predicted here and in
the literature is well below the statistical precision of the current
sample; it is disregarded in the current cosmological analysis
(Section 5).

6.2.1. Dusty Source Contamination

Star formation is expected to be suppressed in cluster environ-
ments (e.g., Hashimoto et al. 1998). Bai et al. (2007) measure

ζ = detection significance
B = 1.31
C = 1.6
A/Afiducial = ratio of 
normalization to nominal 
from sims
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Figure 3. Mass–significance relation plotted over clusters identified in simulated
maps. The relation was fit to points with M > 2 × 1014 M" h−1, shown by the
dotted line, and across a redshift range 0.3 < z < 1.2. Simulated clusters outside
this redshift range are not included in this plot. The approximate lower mass
threshold of the high-redshift end of the SPT sample (M = 4 × 1014 M" h−1)
is shown by the dashed line.

the average detection signal to noise of a simulated cluster,
measured across many noise realizations, evaluated at the
preferred position and filter scale of that cluster as determined
by fitting the cluster in the absence of noise.

Relating ζ and ξ is a two step process. The expected relation
between ζ and 〈ξ 〉 is derived and compared to simulated
observations in Appendix B, and found to be ζ =

√
〈ξ 〉2 − 3.

Given a known 〈ξ 〉, the expected distribution in ξ is derived
by convolution with a Gaussian of unit width. The relation
between ζ and 〈ξ 〉 is taken to be exact, and was verified through
simulations to introduce negligible additional scatter; i.e., the
scatter in the ζ–ξ relation is the same as the scatter in the 〈ξ 〉–ξ
relation, namely, a Gaussian of unit width.

The scaling between ζ and M is assumed to take the form of
power-law relations with both mass and redshift:

ζ = A

(
M

5 × 1014 M" h−1

)B (
1 + z

1.6

)C

, (1)

parameterized by the normalization A, the slope B, and the
redshift evolution C. Appendix C presents a physical argument
for the form of this relation, along with the expected ranges
in which the values of the parameters B and C are expected to
reside based on self-similar scaling arguments.

Values for the parameters A, B, and C were determined by
fitting Equation (1) to a catalog of ζ > 1 clusters detected in
simulated maps, using clusters with mass M > 2×1014 M" h−1

and in the redshift range 0.3 ! z ! 1.2. This redshift range
was chosen to match the SPT sample, while the mass limit
was chosen to be as low as possible without the sample being
significantly cut off by the ζ > 1 threshold. The best fit was
defined as the combination of parameters that minimized the
intrinsic fractional scatter around the mean relation.

Figure 3 shows the best-fit scaling relation obtained for our
fiducial simulated SZ maps, where A = 6.01, B = 1.31, and
C = 1.6. The intrinsic scatter was measured to be 21% (0.21 in
ln(ζ )) and the relation was found to adhere to a power law
well below the limiting mass threshold. Over the three gas
model realizations (Section 4.1), the best-fit value of A, B, and
the intrinsic scatter were all found to vary by less than 10%,
while the values of C predicted by the “standard” and “star

formation” models drop to ∼1.2. For maps generated using
the electron pressure profile of Arnaud et al. (2010), best-fit
values of A = 6.89, B = 1.38, and C = 0.6 were found,
with a 19% intrinsic scatter. The values of A and B remain
within 15% of the fiducial model, although C is significantly
lower. Arnaud et al. (2010) measured the pressure profile using
a low-redshift (z < 0.2) cluster sample and assume that the
profile normalization will evolve in a self-similar fashion. The
mass dependence of their pressure profile was determined
using cluster mass estimates derived from the equation of
hydrostatic equilibrium; simulations suggest that this method
may underestimate the true mass by 10%–20% (Rasia et al.
2004; Meneghetti et al. 2010; Lau et al. 2009). We do not take
this effect into account in our simulations—doing so would
reduce the value of A by approximately 10%. The Bode et al.
(2009) gas model is calibrated against X-ray scaling relations
measured from low-redshift cluster samples (Vikhlinin et al.
2006; Sun et al. 2009), but assumes an evolving stellar-mass
fraction which may drive the stronger redshift evolution.

Based on these simulations, priors on the scaling relation
parameters (A, B, C, scatter) were adopted, with conservative
1σ Gaussian uncertainties of (30%, 20%, 50%, and 20%) about
mean values measured from the fiducial simulation model.
These large uncertainties in scaling relation parameters are the
dominant source of uncertainty in the cosmological analysis
(Section 5) and mass estimation (Appendix C). Furthermore,
although the weakest prior is on the redshift evolution, C, it
is the uncertainty on the amplitude A that dominates the error
budget on the measurement of σ8 (see Section 5.4).

It should be noted that at low redshift (z " 0.3), such a
power-law scaling relation fails to fully capture the behavior
of the CMB-confused selection function. The cosmological
analysis below therefore excludes this region during likelihood
calculation. The mass estimates presented in Appendix D may
be biased low for low-redshift objects, although this effect is
expected to be small compared to existing systematic errors.

5. COSMOLOGICAL ANALYSIS

The 2008 SPT cluster catalog is an SZ-detection-significance-
limited catalog. Simulated maps were used to calibrate the
statistics of the relation between cluster mass and detection
significance, as well as the impact of noise-bias and selection
effects. This relation was combined with theoretical mass
functions to construct estimates of the number density of galaxy
clusters as a function of the significance ξ and redshift, to be
compared to the SPT catalog. Cosmological information from
the SPT cluster catalog was combined with information from
existing data sets, providing improved parameter constraints.

5.1. Cosmological Likelihood Evaluation

Evaluation of cosmological models in the context of the SPT
catalog requires a theoretical model that is capable of predicting
the number density of dark matter halos as a function of both
redshift and input cosmology. For a given set of cosmological
parameters, the simulation-based mass function of Tinker et al.
(2008) was used in conjunction with matter power spectra
computed by CAMB (Lewis et al. 2000) to construct a grid
of cluster number densities in the native ξ–z space of the SPT
catalog.

1. A two-dimensional grid of the number of clusters as a func-
tion of redshift and mass was constructed by multiplying
the Tinker et al. (2008) mass function by the comoving

Vanderlinde et al 2010
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SZ power spectrum

• Ensemble of clusters over 
all z produces secondary 
anisotropy in CMB

• Measurement does not need 
redshifts

• Low value of σ8 and 
dominance of dusty star-
forming galaxies (DSFGs) 
makes it very difficult!

• Relies on templates for
power spectra of all
components

• Current low S/N detections
by SPT in tension with other 
σ8 measurements; ACT not
precise enough yet.  Probably 
due to insufficient
understanding of ICM in cluster
outskirts
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Fig. 4.— The SPT 150GHz bandpowers (black circles), WMAP7 bandpowers (purple squares), ACBAR bandpowers (green trian-
gles), QUaD bandpowers (cyan diamonds), and ACT 150GHz bandpowers (orange circles) plotted against the best-fit lensed ΛCDM

CMB spectrum. The damping tail of the primary CMB anisotropy is apparent below � = 3000. Above � = 3000, there is a clear excess due

to secondary anisotropies and residual point sources that has now been measured by both SPT and ACT. Note that the source masking

threshold in the SPT data (6.4mJy) is lower than that in the ACT data, so we expect less radio source power at high �. We have multiplied

the SPT bandpowers by the best-fit calibration of 0.92 as determined in parameter fits.

pendence over the range of multipoles to which SPT is

sensitive (see Figure 5). We allow the normalization of

each model to vary in all chains, and detect similar tSZ

power in all cases (see Table 6). However as we discuss

in §8, the difference between models is critical in inter-

preting the detected tSZ power as a constraint on cluster

physics or σ8.

6.2.2. kSZ Power Spectrum

We use the S10 (homogeneous reionization) kSZ tem-

plate as the baseline kSZ model. At � = 3000, this model

predicts DkSZ
3000 = 2.05µK2

of kSZ power. The kSZ am-

plitude depends on the details of reionization, and the

scaling of the kSZ power with cosmological parameters,

particularly σ8, is much weaker than the scaling of the

tSZ power. We therefore choose to fix the amplitude of

the kSZ signal to a model value and allow tSZ to vary in-

dependently. This treatment differs from Dunkley et al.

(2010), which uses a single normalization for both SZ

components, and Millea et al. (2010) in which a fitting

function is used to calculate the kSZ power as a function

of cosmological parameters at each step in the MCMC

chain. For the current SPT data set, where tSZ and

kSZ power are largely degenerate, we expect the differ-
ences in kSZ treatment to be insignificant. This assump-

tion was tested by importance sampling an MCMC chain

with variable kSZ amplitude according to the scaling at

� = 3000 described in Millea et al. (2010). As expected,

we find no significant difference in fitted parameters.

In §7 we will discuss the impact of two alternate kSZ

treatments in addition to the baseline model. First, we

Fig. 5.— Templates used for the tSZ, kSZ, and clustered DSFG

power discussed in §6. The top plot shows alternate tSZ templates.

The black, solid line is the (baseline) S10 model. The blue,
dashed line is the Shaw model. The red, dotted line is the

Trac model. The teal dot-dash line is the Battaglia model. The

bottom plot shows both kSZ and clustered DSFG templates. The

black, solid line is the (baseline) S10 kSZ model. The red,
dotted line is the patchy kSZ model. The blue, dashed line
is the (baseline) power-law clustered DSFG template. The teal,
dot-dash line is the linear-theory clustered DSFG template. The

clustered DSFG templates have both been normalized to 1 µK2
at

� = 3000.

consider a kSZ template that includes the signal from

patchy reionization (hereafter the patchy kSZ template).

This template, which was also used in L10, is based upon

the “FFRT” semi-analytic model of Zahn et al. (2010).

It was calculated in a 1.5 Gpc/h cosmological column
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Fig. 3.— Top panel: From left to right, the SPT 150GHz, 150 × 220GHz, and 220GHz bandpowers. Overplotted is the best-fit model
(red line) with components shown individually. The lensed primary CMB anisotropy is marked by an orange line. The best-fit tSZ
(purple line) and predicted kSZ (purple dashed line) power spectra are also shown. The predicted radio source term is represented by
the blue dots. The DSFG Poisson term at each frequency is denoted by the green dashed line and the clustered DSFG component by
the green dot-dash line. The damping tail of the primary CMB anisotropy is apparent below � = 3000. Above � = 3000, there is a clear
excess with an angular scale dependence consistent with point sources. These sources have low flux (sources detected at > 5σ at 150GHz
have been masked) and a rising frequency spectrum, consistent with expectations for DSFGs. Bottom panel: Plot of the residual between
the measured bandpowers and best-fit spectrum.

terms can be written as

DSZ
�,ν1,ν2

= DtSZ
3000

fν1fν2

f2
ν0

ΦtSZ
�

ΦtSZ
3000

+DkSZ
3000

ΦkSZ
�

ΦkSZ
3000

. (11)

Here, ΦX
� denotes the theoretical model template for

component X at frequency ν0. The frequency depen-

dence of the tSZ effect is encoded in fν ; at the base

frequency ν0, DtSZ
3000,ν0,ν0

= DtSZ
3000. The kSZ effect has

the same spectrum as the primary CMB anisotropy, so

its amplitude is independent of frequency. In this work,

we set ν0 to be the effective frequency of the SPT 150

GHz band (see §6.4).

6.2.1. tSZ Power Spectrum

We adopt four different models for the tSZ power spec-

trum. Following L10, we use the power spectrum pre-

dicted by S10 as the baseline model. S10 combined the

semi-analytic model for the intra-cluster medium (ICM)

of Bode et al. (2009) with a cosmological N-body simula-

tion to produce simulated thermal and kinetic SZ maps

from which the template power spectra were measured.

The assumed cosmological parameters are (Ωb, Ωm, ΩΛ,

h, ns, σ8) = (0.044, 0.264, 0.736, 0.71, 0.96, 0.80). At

� = 3000, this model predicts DtSZ
3000 = 7.5µK2

of tSZ

power in the SPT 150GHz band. We use this model in

all chains where another model is not explicitly specified.

We also consider tSZ power spectrum models reported

by Trac et al. (2010), Battaglia et al. (2010), and Shaw

et al. (2010). Trac et al. (2010) followed a procedure

similar to that of S10, exploring the thermal and kinetic

SZ power spectra produced for different input param-

eters of the Bode et al. (2009) gas model. We adopt

the nonthermal20 model (hereafter the Trac model) pre-

sented in that work, which differs from the S10 simula-

tions by having increased star formation, lower energy

feedback, and the inclusion of 20% non-thermal pres-

sure support. It predicts a significantly smaller value

of DtSZ
3000 = 4.5µK2

when scaled to the SPT 150GHz

band. The second template we consider is that pro-

duced by Battaglia et al. (2010) from their Smoothed-

Particle-Hydrodynamics simulations including radiative

cooling, star formation and AGN feedback (hereafter the

Battaglia model). This model predicts DtSZ
3000 = 5.6µK2

,

intermediate between the baseline model and the Trac

model, and peaks at slightly higher � than either of those

models. Shaw et al. (2010) investigate the impact of

cluster astrophysics on the tSZ power spectrum using

halo model calculations in combination with an analytic

model for the ICM. We use the baseline model from

that work (hereafter the Shaw model), which predicts

DtSZ
3000 = 4.7µK2

in the 150GHz band. The model of

Shaw et al. (2010) is also used to rescale all the model

templates as a function of cosmological parameters, as

described in §8.
All four tSZ models exhibit a similar angular scale de-

tSZ
kSZ

radio pt

DSFG
poisson

DSFG
clustered
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Why everything I have said to now is a lie...
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Scaling Relations, Revisited

• Power-law slopes usually a
good match to self-similarity

• But normalization often 
reflects deviations
• e.g. YSZ vs. Mgas data prefer 

inclusion of radiative cooling 
and galaxy formation; but data 
still deviate, and the way they
were included is subject to 
debate

• Observations only now 
beginning to reach virial radius
• Perhaps this will reduce such

deviations?

• Exhaustive studies of normalization
of scaling relations as a function of
enclosing radius are needed

20
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Cool Cores, T(r)

• Generic downward temperature gradient
to outskirts

• Cool-core clusters have sharp drop in 
T at < 0.1rvir

→Thermal conductivity is not infinite,
virialization is not fully valid.
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Fig. 3. The scaled density (top left panel) and temperature (top right panel) profiles of the REXCESS sample. Each profile is colour coded
according to the cluster (thermo)dynamical state (see labels and Sect. 2). The radii are scaled to R500, estimated from the M500−YX relation (Eq. (2)).
The density is scaled to the mean density within R500 and the temperature to TX, the spectroscopic temperature measured in the [0.15−0.75] R500
aperture. In each panel, the thick black line is the average scaled profile. Dotted lines in the top right panel: extrapolated part of the profiles.
Bottom panels: logarithmic deviation of the scaled temperatures from the average scaled profile versus the corresponding deviation for the density,
at each effective radius of the temperature profile annular bins. Data corresponding to r/R500 < 0.2 and r/R500 > 0.2 are plotted in the left and
right panels, respectively. The deviations are anti-correlated in the core.

For comparison we also plot in Fig. 3 the scaled temperature pro-
files, t(x) = T (r)/TX as well as the scaled density profiles, ñe(x).
Note that the density profiles have been normalised to the mean
density within R500, so that the dispersion is only due to varia-
tions in shape2.

The resolution in the center and radial extent of the pres-
sure profiles are determined by that of the temperature profiles,
in practice the effective radius of the inner and outer annular
temperature profile bins, which varies from cluster to cluster
(see Fig. 2). In particular, the peaked emission of cool core
clusters allows us to measure the profiles deeper into the core
than for disturbed clusters, which have more diffuse emission
(see also Sect. 3.3).

2 The normalisation of the density profiles, scaled according to the
standard self-similar model, varies with mass as shown by Croston et al.
(2008).

3.2. Average scaled pressure profile

We computed an average scaled pressure profile, (x), from the
median value of the scaled pressure in the radial range where
data are available for at least 15 clusters without extrapolation
(about [0.03−1] R500). However, to avoid a biased estimate of
the average profile in the core, where the dispersion is large
and more peaked clusters are measured to lower radii (Fig. 2),
it is important to include all clusters in the computation. For this
purpose, we extrapolated the pressure profiles in the core using
the best fitting temperature model used in the deprojection of
the temperature profile. The extrapolated part of the profiles are
plotted as dotted lines in Figs. 2 and 3. This extrapolation is only
weakly model dependent since it essentially concerns disturbed
clusters (Fig. 2), which are observed to have rather flat central
temperature profiles (Fig. 3). The average profile is plotted as a
thick line in Fig. 2. The dispersion around it is defined as the plus

Page 4 of 20
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The Cooling-Flow Problem
• Shouldn’t the cool cores cool further?

• Bremsstrahlung radiative cooling time obeys: 
	
 	
 	
 tcool = 85 Gyr (10-3 cm-3/ne) (Te/108 K)1/2

• tcool  > age of universe at large radius, but tcool  is shorter in 
cool cluster cores bec. ne larger by x10-100 and Te reduced: Should get runaway cooling.
Gas should condense out of ICM.
→ dMgas/dt = −(100-500) M⊙/yr
→ expect low-energy line emission from “cooled” gas,
     “cooling flow” inward to replenish lost material

• But they don’t: cold gas emission not seen by XMM 
(Peterson et al 2001, 2003), Chandra.  

• Classical cooling flow discarded.  Current belief: 
• entropy injection from galaxies likely to prevent condensation of cool gas.  
• Detailed mechanism not yet solid: hard to get high enough efficiency.  Many good ideas, 

though, will be interesting to see these tested.
• Some reduced version of cooling flows may be present (e.g., Voit, Donahue et al):

• Signs of enhanced star formation in central galaxies when tcool is short
• Self-regulation? Enhanced star formation ↗ entropy injection into ICM, heating up remaining gas.

• Similar feedback mechanism for AGN (cold ICM gas feeds AGN, which then heats ICM)

22

18 J.R. Peterson, A.C. Fabian / Physics Reports 427 (2006) 1– 39

Fig. 6. The cooling time as a function of radius for a sample of relaxed clusters as measured with Chandra. If left undisturbed, all plasma within
100–200 kpc would have sufficient time to cool. Figure adapted from Voigt et al. [250].

Fig. 7. The average temperature in radial bins for a sample of relaxed clusters of galaxies as measured with Chandra. The temperature and radius
are scaled to r2500. A typical cluster shows a clear decline in the average temperature at the center, which is in agreement with many spectroscopic
studies over the previous two decades. Figure is adapted from [6].

Voit et al 
Chandra
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• Gas mass fraction increases with r and M, always < universal value.

• Entropy profiles
• Entropy (kT/ne2/3) reflects non-adiabatic effects, so reflects non-self-similar history
• Entropy is elevated in non-cool-core clusters.
• See large variations in entropy profile,with convergence to self-similar behavior

occurring at smaller r/r500 for larger M; entropy floor effects more important at lower M

• Product of gas fraction and entropy much better matches self-similarity
• → Elevated entropy due to reduced gas density due to loss of gas.  

May explain LX ∝TX3 deviation from LX ∝TX2 self-similar expectation.
• Cool-core clusters may have not suffered disturbing events that eject gas, enabling cooling.

Gas Mass Fraction and Entropy
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Fig. 2. Dimensionless entropy profiles of the REXCESS sample compared to theoretical expectations from non-radiative simulations. The ob-
served profiles have been renormalised by the characteristic K500 as defined in Eq. (3). Line styles are as for Fig. 1. The dashed line depicts the best
fitting power law fit to the the median entropy profile in the radial range [0.1−1]R200 for the clusters formed in the non-radiative simulations of Voit
et al. (2005). The dot-dashed line represents the same relation corrected for a 13 per cent underestimate of true mass due to the use of hydrostatic
equilibrium. Left panel: clusters arranged according to temperature. The thick black line represents the median of all observed dimensionless
profiles. The shaded grey area corresponds to the region enclosed by the median profile and typical scatter of the SPH simulations in Voit et al.
(2005). Right panel: subsamples identified, defined as in Sect. 2.1. Black profiles denote clusters that are neither cool core nor morphologically
disturbed.

noted for a sample of cool core clusters by Nagai et al. (2007).
For the present representative sample, given the large uncertain-
ties it is not possible to test the predictions more thoroughly,
underlining the need for robust, high quality, spatially resolved
entropy measurements at and beyond R500.

3.2. Entropy scaling relations

For comparison with previous work, we also examined the
entropy-temperature and entropy-mass relations. Scaling rela-
tions were fitted with a power law of the form E(z)nB =
C(A/A0)α, with A0 = 5 keV and 5.3 × 1014 M# for T and
M respectively, and n fixed to the expected scaling with red-
shift (n = 4/3 for T and 2/3 for M). Data were fitted using the
orthogonal BCES minimisation technique (Akritas & Bershady
1996) with uncertainties on each fit parameter estimated from
bootstrap resampling.

The best fitting slopes and intercepts for the entropy-
temperature and entropy-mass relations at various scaled radii
are listed in Table 2. The evolution of these slopes with increas-
ing radius mirrors the behaviour of the dimensionless entropy
discussed above; in the inner regions the relations are shallower
than self-similar with large scatter, while at R500 the relations
are compatible with self-similar (although with relatively large
uncertainties given the limited number of data points).

Comparing to previous work, a wide variety of slopes have
been found from fits to the entropy-temperature relation at
0.1 R200, ranging from very shallow (α = 0.49 ± 0.15: Pratt
et al. 2006; α = 0.50 ± 0.08: Nagai et al. 2007) to very steep
(α = 0.92 ± 0.12: Sanderson et al. 2009; α = 0.85 ± 0.19:
this work). We simply note that cool core-only samples tend to
yield shallower slopes than statistically-selected samples, a fact

borne out in the present data, for which the entropy temperature
relation at 0.1 R200 for the cool core subsample has a slope of
α = 0.63±0.94, while the morphologically disturbed subsample
has a slope of α = 1.22 ± 0.76. Beyond 0.1 R200, both the slope
and the normalisation of the relations are in very good agreement
with recent determinations (Nagai et al. 2007; Sun et al. 2009),
showing the excellent consistency between XMM-Newton and
Chandra results5.

None of the studies listed above give constraints on en-
tropy evolution. In this context, our results underline the need
for representative samples, to establish the effects of non grav-
itational processes and dynamical state on the evolution in the
central regions. Furthermore, precise measurements at large ra-
dius (R >∼ R2500) are needed to establish the baseline entropy
evolution in the absence of non-gravitational effects.

4. Radial entropy structure

Various semi-analytical models and cosmological simulations of
clusters formed in the absence of non-gravitational processes
have shown that outside the central regions (R > 0.1 R200,
or ∼0.15 R500), entropy profiles follow a power law with K(R) ∝
R1.1 (Tozzi & Norman 2001; Borgani et al. 2005; Voit et al.
2002, 2005; Mitchell et al. 2009). Simulated profiles flatten in
the very central regions due to entropy mixing (Wadsley et al.
2008; Mitchell et al. 2009). Observed profiles are also found
generally to have similar external slopes (e.g., Pratt et al. 2006;
Sun et al. 2009) and to flatten in the central regions in high

5 Our earlier results suggested somewhat shallower relations at R1000
(Pratt et al. 2006). The difference can be traced to the increased preci-
sion on the temperature profiles afforded by the present data, especially
at low mass.
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Fig. 8. The dimensionless entropy K/K500 rises with fg(R) =
Mg/( fb M500), the fraction of a cluster’s baryons in the ICM within ra-
dius R in all clusters. However, the entropy distribution shows a clear
temperature dependence. The dashed line illustrates the unmodified en-
tropy distribution for a cluster of M500 = 8 × 1014 M" (approximately
the mass of the most massive cluster in the present sample), assuming a
concentration c500 = 3.2 and gas in hydrostatic equilibrium in the clus-
ter potential with a density profile identical to that of the dark matter.

Fig. 9. Entropy profiles multiplied by the gas mass fraction profile. The
dashed line is the predicted entropy distribution from the non-radiative
simulations of Voit et al. (2005).

The above results can be explained in a number of ways.
There may be a bias of gas accretion with mass, for instance due
to early heating, which makes it more difficult to compress the
gas into lower mass haloes. Once accreted, the gas may be re-
moved from the hot phase by radiative cooling, which acts more

efficiently in the densest central regions. However for this mech-
anism to be wholly responsible for the observed entropy proper-
ties would require it to affect the gas to a considerable fraction
of R500 and to be preferentially efficient in low mass systems.
Finally, there may be expulsion of material from the central re-
gions towards the outskirts, perhaps via convection due to en-
ergy injection from supernovae or a central AGN, with the low-
est mass systems experiencing the most central gas removal due
to their shallower potential wells.

The mass dependence of the total baryon fraction provides a
way of discriminating between the competing processes. If cool-
ing is the dominant effect, then the total baryon fraction should
be almost constant across the mass range from groups to clus-
ters as the low entropy gas is converted into stars. However, sim-
ply cooling out the low entropy gas would greatly exceed the
observed mass in stars, and would lead to a galaxy luminosity
function completely at odds with observations. If instead extra
heating dominates, then the baryon fraction should be lower for
lower mass, group-scale systems, as either early heating makes
compression of gas into these haloes less efficient or AGN activ-
ity expels gas from their shallow potential wells. The observed
anti-correlation in the relative dependencies of gas and stars with
total mass implies that there is more mass locked in stars in sys-
tems which contain less gas (Lin et al. 2003; Gonzalez et al.
2007; Giodini et al. 2009). However, recent results suggest that
there is still a ∼3σ deficit of baryons with respect to that mea-
sured by WMAP on galaxy group scales (Giodini et al. 2009),
implying that both cooling and heating must contribute to chang-
ing the thermodynamic properties of the ICM.

5.4. Speculative scenario

The representative nature of the REXCESS sample has brought
to light some intriguing points outlined above, which allow us
to propose a tentative scenario. It seems that about two thirds
of the REXCESS clusters possess a significantly higher central
entropy than that expected from current non-radiative cosmolog-
ical simulations and consequently do not possess a cooling core.
A combination of extra heating and continuous ICM mixing due
to merging may have kept these systems on a higher adiabat,
leading to the observed high central entropies. Some early ex-
tra heating may have occurred in the protocluster phase, which
would coincide with the peak in AGN activity at z ∼ 2−3. In
this scenario the lower entropy envelope traced by the non-cool
core systems (see Fig. 2) could indicate the level of early extra
heating. The distribution of central entropy above this lower en-
velope would then be produced by later heating and gas mixing
during mergers, with the least relaxed objects having the higher
central entropy, as observed. These processes will inhibit forma-
tion of a stable cool core and naturally lead to redistribution of
the gas to the outskirts, acting most importantly in low mass sys-
tems, corresponding to the observed behaviour of the gas mass
fraction.

In contrast, about one third of the REXCESS sample possess
a cool core. The clear association of the BCG with the bottom of
the potential well (Haarsma et al. 2010) and their regular X-ray
morphology testifies to the relaxed nature of these objects. These
systems presumably experienced a less chaotic early dynamical
history leading to a modest entropy elevation due to mixing (if
any), and may have undergone less early extra heating, allowing
them to develop a cool core at a relatively young age. The natural
reduction of entropy due to cooling while the gas is still in the
hot phase, due to the combination of a temperature drop and
the consequent increase in gas density needed to keep pressure
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dashed line = self-sim 
expectation from
non-radiative, 
fixed fgas sim 
(Voit et al 
2005)

G. W. Pratt et al.: Entropy properties of the REXCESS

Fig. 6. Implied Spitzer conductivity suppression factor as a function of
radius. The different cluster subsamples are indicated; line styles are as
for Figure 1. The dashed line indicates the threshold between thermally
unstable and conductively stable regimes.

be a consequence of the presence of very dense cores which are
very hard to disrupt (e.g. Gómez et al. 2002; Poole et al. 2008).
The presence of these dense cores, of which in some cases mul-
tiple instances may be present in the same system (Böhringer
et al., in prep.), at variance with observations, may point to defi-
ciencies in the modelling of the complex interplay between grav-
itational and non-gravitational processes in these simulations.

5.3. Linking entropy and gas mass fraction

Entropy modification is generally discussed in terms of three ba-
sic mechanisms: early heating (“pre-heating”), where the gas is
heated before accretion into the dark matter potential well, pre-
sumably either by early supernovae and/or AGN activity (e.g.
Kaiser 1991; Evrard & Henry 1991); internal heating after accre-
tion by the same or similar mechanisms (e.g. Metzler & Evrard
1994; Bower et al. 2008); radiative cooling of the gas (e.g.
Pearce et al. 2000), where the lowest entropy gas found in the
centre of the cluster condenses and cools out of the ICM. All of
these processes act to change the total amount of gas in the cen-
tral regions of a cluster, either through making it more difficult
to compress into the halo (early heating), through convection of
gas to the outer regions (internal heating), or through physical
removal of the gas to form stars (cooling).

In Fig. 7 we show the gas mass fraction profiles fgas (<R) =
Mgas (<R)/M (<R) for the present sample. Gas masses have been
calculated from the gas density profiles (Croston et al. 2008).
Total mass profiles were calculated assuming an NFW profile
with concentration c500 = 3.2, the average concentration de-
rived from the total mass profiles of the morphologically reg-
ular sample of Pointecouteau et al. (2005)8, normalised to M500
estimated from Eq. (1). There is a clear dependence of fgas on
temperature/mass, throughout the observed temperature range,
in the sense that hotter, more massive systems have higher gas

8 The dependence of concentration on total mass is negligible for the
mass range we consider here (Pointecouteau et al. 2005; Buote et al.
2007).

Fig. 7. Gas mass fraction profiles fgas(< R). Total mass profiles
are calculated for an NFW profile with a concentration c500 =
3.2 (Pointecouteau et al. 2005), normalised to the M500 estimated
from Eq. (1).

mass fractions throughout the ICM. In addition, there is a clear
dependence of gas mass fraction with radius in all systems, and
only the most massive clusters have gas mass fractions which
approach the universal value at the highest radii we are able to
probe.

In Fig. 8 we plot the dimensionless entropy K/K500 as a func-
tion of fg (< R) = Mgas/( fb M500), the fraction of a cluster’s
baryons in the ICM within radius R. fg is calculated assuming
fb = 0.15 (Ωbh2 = 0.022 and Ωm = 0.3), and using total masses
estimated from Eq. (1). Overplotted for comparison is an unmod-
ified entropy distribution from the models of Voit et al. (2002),
derived for a cluster of M500 = 8 × 1014 M" (approximately the
mass of the most massive cluster in the present sample), assum-
ing a concentration c500 = 3 and gas in hydrostatic equilibrium in
the cluster potential with an identical density profile to that of the
dark matter. This particular representation makes explicit both
the dependence of the entropy distribution on baryon (gas) frac-
tion, and the mass/temperature dependence of the baryon (gas)
fraction itself. The gradual translation of the profiles to the left
hand side of the plot is due to a systematic lack of baryons (gas)
in low temperature systems relative to high temperature systems.

The consequence of entropy modification is thus to remove
gas (or prevent gas from accreting) in such a way as to leave
both a radial and a mass dependence in the gas mass fraction.
It is interesting to see whether correcting for this effect might
bring the entropy profiles of our sample into agreement with the
predictions from simulations. In Fig. 9 we show the dimension-
less entropy profiles multiplied by the gas mass fraction profile
fgas (<R), a renormalisation that is equivalent to correcting si-
multaneously for the global and radial dependence of the gas
mass fraction. Once renormalised in this way, the profiles are al-
most fully consistent, both in slope and normalisation, with the
expectation from non-radiative simulations, and the dispersion
drops dramatically. Slightly better agreement can be found if the
simulated relation is multiplied by a factor to take into account
the hydrostatic mass offset found in numerical simulations.
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Turbulence

• Turbulence and convection 
generally expected because thermal
conductance is not infinite and
it may be anisotropic due to
B fields.

• Can be probed by searching for
excess spectral line widths; 
upper limits very constraining 
in some cases.

24

1810 J. S. Sanders, A. C. Fabian and R. K. Smith

Table 5. Measured linewidths and linewidths from spectra simulated using
Chandra maps in the absence of turbulence. The difference column shows
the difference between best-fitting velocities of the observed and simulated
spectra. The limit column shows the 90 per cent upper limit on the measured
velocity after subtracting the predicted velocity. Uncertainties are 1σ in this
table. Objects indicated with ∗ show the results using an MCMC analysis.

Object Real Predicted Difference Limit
(km s−1) (km s−1) (km s−1) (km s−1)

Abell 133 910 ± 170 771 ± 17 140 ± 170 260
Abell 383 670 ± 250 377 ± 26 290 ± 250 700
Abell 496 1050 ± 70 1065 ± 6 −15 ± 70 100
Abell 1068 50+405

−50 536 ± 23 −490+405
−55 180

Abell 1650∗ 45+790
−45 1034 ± 70 −990+790

−45 310
Abell 1795 1040 ± 195 1030 ± 20 10 ± 195 330
Abell 2063 1530+460

−405 1780 ± 65 −250+460 510

Abell 2204 250+110
−125 282 ± 13 −30+110

−125 150
Abell 2597 510 ± 75 674 ± 12 −160 ± 75 -40
Abell 2626 705+210

−190 955 ± 25 −250+210
−190 100

Abell 2667 0+240 374 ± 40 −370+240 25
Abell 4059 1050+205

−175 1350 ± 20 −300+205 40

E 1455.0+2232 0+460 375 ± 33 −375+460 380
HCG 62 710 ± 50 749 ± 4 −40 ± 50 40
Hercules A 770+300

−230 573 ± 20 200+300
−230 700

Hydra A 750 ± 115 867 ± 12 −120 ± 115 70
Klem 44∗ 3660+960

−720 1892 ± 50 2350+960
−720 1160

MKW 4 1320+345
−415 970 ± 20 350+345

−415 920
MS 0735.6+7421 300 ± 300 970 ± 40 −470 ± 300 25
NGC 533 530 ± 105 541 ± 8 −10 ± 105 160
NGC 1316 650 ± 60 685 ± 6 −145 ± 65 65
NGC 1399 590 ± 60 545 ± 4 45 ± 60 140
NGC 5044 1530+120

−95 1760 ± 16 −230+120
−95 -32

NGC 5813 1605 ± 95 1540 ± 6 65 ± 95 220
PKS 0745-19∗ 910+600

−880 790 ± 65 120+600
−880 1110

RBS 540 545 ± 165 700 ± 15 −155 ± 165 120
RBS 797∗ 0+535 673+30

−55 −675+535 210
RX J1347.5-1145∗ 1320+770

−430 200 ± 100 1120+770
−430 410

RX J1720.1+2638 530+290
−250 431 ± 25 100+290

−250 580

RX J2129.6+0005∗ 0+1530 470 ± 45 −470+1530 2150
Zw 3146 310 ± 100 320 ± 10 −10 ± 100 155

Figure 12. Mass deposition rate as a function of temperature for Zw 3146.
The boxes show the 1σ uncertainties on mass deposition rate and ranges
or temperature for each component in the model. Also shown are the mass
deposition rates from Egami et al. (2006), Edge et al. (2010) and Crawford
et al. (1999).

Figure 13. Limits on velocity broadening as a function of RGS-measured
temperature. Also plotted are the sound speed as a function of temperature,
and what fraction of the thermal energy density the velocity broadening
would represent. The points connected by dotted lines show the results
using one- and two-temperature components for the same objects. Abell
1835 is analysed in Sanders et al. (2010).

Figure 14. Limits on velocity broadening after subtracting the contribution
from the source spatial extent using modelling. These results should be
treated with caution as they are dependent on the modelling being correct.
We also show the results after adding an additional 50 km s−1 possible
systematic uncertainty from the LSF calibration.

4.2 Redshifts

In Fig. 15 our measured redshifts are plotted against the value from
the NED data base and the fractional difference as a function of
redshift. We show in Fig. 16 the fractional difference between the
two values for each object. Although the agreements between our
values and those from NED are good in many objects, there are a

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 410, 1797–1812
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Table 3 – continued

Cluster Redshift Limit MCMC limit 2T limit Narrow LSF limit Broad LSF limit
(km s−1) (km s−1) (km s−1) (km s−1) (km s−1)

Abell 2597 0.08252 ± 0.00023 <660 <670 <680 <640
Abell 2626 0.05415 ± 0.00057 <880 <920 <900 <860
Klemola 44 0.02819 ± 0.00055 <970 <3800 <990 <950
Abell 2667 0.23240+0.00067

−0.00055 <410 <810 <400 <420
Abell 4059 0.04873 ± 0.00056 <1200 <1400 <1200 <1200

Figure 4. Upper limits (90 per cent) on the turbulent velocity broadening of the spectra. Shown are the limits for single thermal component modelling for all
objects, and two-temperature modelling for selected objects.

Figure 5. A comparison between the upper limits on the linewidths obtained with the standard calibration, and responses in which the LSF is 10 per cent
narrower or 10 per cent broader than standard. The continuous line shows the upper limits derived from the MCMC analysis. Also plotted are the best-fitting
linewidth and 1σ error bars, which include the spatial component of broadening.

broadening. In order to do better than the limits in Section 2.3 we
need to differentiate spatial broadening and intrinsically broad lines,
which requires combined spatial and spectral information about the
target. We need to know which parts of the RGS spectra come from
what dispersion direction angles. This is done by simulating RGS
spectra from Chandra spectral maps.

3.1 Spectral map creation

Our Chandra temperature maps were created by examining the
data sets listed in Table 4. The data sets were reprocessed with the
standard CIAO tools and very faint event processing was applied if

possible. We used an iterative algorithm to remove time periods
where the count rate was further than three standard deviations
from the median in 200-s time bins on the CCDs of the same
type which did not include the object itself (ACIS-0, 1 and 2 for
ACIS-I observations, and ACIS-5 for ACIS-S observations). We
excluded point sources, which were initially detected by WAVDETECT

and confirmed by eye.
The Contour Binning algorithm (Sanders 2006) was used to se-

lect regions with similar surface brightness containing a minimum
signal-to-noise ratio in each bin (listed in Table 4) between 0.5
and 7 keV. Spectra were extracted from the event files for each of
these spatial bins. Background spectra were extracted from blank

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 410, 1797–1812

Sanders et al 2011
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Questions, Questions, Questions
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How is the kinetic energy of infalling gas thermalized?

What is the baryon fraction as a 
function of radius and redshift?

How are the baryons divided among 
stars, cold gas, and hot gas?

Does the dark matter profile evolve with time?
Is it reflective of the redshift of formation?

What is the microscopic 
plasma physics of the ICM:

thermal conductivity, viscosity, 
electron-ion equilibration time?

Does the ICM have bulk motions?
What do they tell us about

the cluster assembly history?

How much does the ICM deviate from
hydrostatic equilibrium?

What is the size and cause of
temperature gradients in the ICM?

Is the ICM stable against 
convective instability?

Is the ICM turbulent?  Why?

What is the form and effect of feedback 
from galaxies (AGN, winds, cosmic rays?)

What is the role of radiative cooling?

How did cluster magnetic fields come
into existence and evolve?

What is the cosmic ray content of the ICM?
What impact does it have on the 

thermodynamics?

What is the magnetohydrodynamics of 
the ICM, and how does it affect the 

plasma’s properties?

How do scaling relation parameters depend
on formation history and current 

morphology?

How much dark matter
substructure is preserved?

What is the metallicity as a 
function of radius and redshift?

What are the systematic limits on our ability to constrain cosmology with clusters?
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   Spitzer and WISE

• Spitzer
• IRAC Shallow Cluster Survey

(Eisenardt et al.)
• Galaxy overdensities selected 

using wavelet filter applied to 4.5-
µm IRAC images + photometric z 
data in 7.25 deg2

• dN/dz matches predictions
• SpARCS: Spitzer Adaptation of 

the Red-Sequence Cluster Survey
• Uses “red sequence” in R/3.6 µm

color vs. 3.6 µm flux to identify
• 99 clusters in Spitzer FLS already;

~13x area, √2 deeper in process

• WISE
• Similar searches on

full sky beginning
• Shallower → larger M;

better for SZ, X-ray
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Obtaining substantial samples of galaxy clusters at z > 1 has
proved challenging, largely because such objects are difficult to
detect using only optical data. Due to their greatly enhanced rate
of star formation by z ! 1, the UV emission from modest-sized
field galaxies overwhelms that from the intrinsically red spectra
of quiescent, early-type galaxies preferentially found in clusters.
The Red Sequence Cluster Survey (Gladders & Yee 2000, 2005)
uses the observed color-magnitude relationship in cluster galaxies
to improve the contrast and has proven highly efficient to z ! 1,
but the optical colors of the red sequence become increasingly
degenerate at higher redshifts, as they no longer span the rest
4000 8 break. Wilson et al. (2008) describe a program to extend
the red sequence technique to higher redshift using Spitzer data,
but it is also important to test for the existence of red sequences in
z > 1 clusters rather than preselecting for them, if possible.

The contrast of high-redshift clusters over the field improves
at longer wavelengths (Fig. 1), but the contrast against atmo-
spheric emission declines, and until recently the relatively small
formats of infrared detector arraysmade surveying sufficient zk 1
volume a formidable undertaking. Stanford et al. (1997) reported
the discovery of a cluster at z ¼ 1:27 in a 100 arcmin2 survey to
Ks(Vega) ¼ 20 (10 !). But this survey required approximately
2 hr of exposure in both J and Ks per position, and 30 allocated
nights of KPNO 4 m time to complete. With estimates for the
surface density of 1014 M# clusters at z > 1 in the range 0.2–
4 deg$2 (Sheth & Tormen 1999), the discovery was in hindsight
fortuitous.

Such considerations motivated a different approach, where
extended sources in deep X-ray surveys lacking prominent op-
tical counterparts were targeted for IR follow-up. This technique
yielded confirmed clusters at z ¼ 1:10, 1.23, and 1.26 (Stanford
et al. 2002; Rosati et al. 1999, 2004). With the arrival of XMM-
Newton, X-ray surveys offer renewed promise, leading recently

to the identification of galaxy clusters at z ¼ 1:39 (Mullis et al.
2005) and 1.45 (Stanford et al. 2006).With exposure times >20 ks
and a 300 field of view, a discovery rate of approximately 30 hr per
candidate z > 1 cluster above 1014M# is expected (assuming one
such cluster per square degree, which corresponds to !8 ¼ 0:83).
Searches for clusters around radio galaxies have yielded pro-

toclusters with redshifts as high as 4.1 (Pentericci et al. 2000;
Venemans et al. 2002, 2005) and possibly even 5.2 (Overzier
et al. 2006). The very large redshifts of these systems enable
powerful inferences to be drawn regarding the formation of clus-
ter galaxies, but they are less useful as probes of the cosmological
growth of structure. Lyman break galaxy surveys with intensive
follow-up spectroscopy on the Keck Telescopes have also iden-
tified highly overdense structures at z ¼ 2:30 and 3.09 (Steidel
et al. 1998, 2005), and Ouchi & SXDS (2007) discuss a z ¼ 5:7
structure identified via Ly" emission in a narrowband imaging
survey.
Recent advancements in IR detector array formats have re-

newed interest in ground-based IR surveys. In one example of
the state of the art, Elston et al. (2006) use the 2048 ; 2048 pixel
FLAMINGOS camera tomap 4 deg2 to a 50% completeness limit
of Ks ¼ 19:2 (Vega). With 2 hr exposures on the KPNO 2.1 m
each covering 1/10 deg2, this leads to an expected discovery rate
for high-redshift clusters per useful hour of observing which is
similar to XMM-Newton. The UKIDSS Ultra Deep Survey pro-
vides another recent example, finding 13 cluster candidates with
0:6 < z < 1:4 in a 0.5 deg2 survey (van Breukelen et al. 2006),
one ofwhich has four spectroscopic redshifts at z ¼ 0:93 (Yamada
et al. 2005), and Zatloukal et al. (2007) find 12 candidates with
1:23 < z < 1:55 in a 0.66 deg2 H-band survey in the COSMOS
field.McCarthy et al. (2007) present a systemwith a high density
of galaxies with red optical to near-IR colors surrounding a gal-
axy at z ¼ 1:51, identified in the 120 arcmin2 Gemini Deep Deep
Survey. Candidates drawn from surveys of less than a square de-
gree are unlikely to include many rich clusters, however.
With the launch of the Spitzer Space Telescope in 2003 (Werner

et al. 2004), sensitive infrared arrays free from foreground thermal
emission were put into operation (Fazio et al. 2004a). A major
scientific driver for the Spitzer Infrared Array Camera (IRAC)
Shallow Survey (Eisenhardt et al. 2004) was the detection of
z > 1 galaxy clusters. The IRAC Shallow Survey uses 90 s ex-
posures per position and covers 8.5 deg2, leading to an expected
discovery rate of<8 hr per z > 1 cluster. Here we present results
from the IRAC Shallow Survey cluster search, finding 106 clus-
ter and group candidates at z > 1, of which we estimate only
!10% are spurious.
A surface density of over 10 systems per square degree at z >

1 is higher than expected for bound systems with masses above
1014M# for the current range of plausible !8 estimates.While we
present evidence that at least two of the z > 1 clusters have
masses well above 1014 M#, it is likely that our sample includes
systems with masses below 1014 M# (i.e., groups), and perhaps
some unbound filaments viewed end-on. In the remainder of this
paper, for brevity the terms ‘‘clusters’’ and ‘‘candidates’’ are used
to refer to all such objects whichmeet our selection criteria, unless
otherwise stated.
This paper describes how the cluster sample was identified,

and some of the overall photometric properties of the sample.
We also provide new spectroscopic evidence supporting nine of
these clusters, from z ¼ 1:057 to 1.373. Spectroscopic evidence
in support of IRAC Shallow Survey selected clusters at z ¼
1:112; 1.243, and 1.413 was presented in Elston et al. (2006),
Brodwin et al. (2006), and Stanford et al. (2005), respectively,
and we provide additional previously unpublished spectroscopy

Fig. 1.—L% for cluster galaxies vs. z, in the observed BW (long-dashed line),
I (short-dashed line), Ks (dotted line), and IRAC 4.5 #m (solid line) bands. The
curves are based on a Bruzual & Charlot (2003) model in which stars are formed
in a 0.1Gyr burst beginning at zf ¼ 3 in a! ¼ 0:7,"m ¼ 0:3, h ¼ 0:7 cosmology,
which fits the observed L% in galaxy clusters to zk1 (de Propris et al. 1999). This
model is referred to as the ‘‘red spike’’ model in the text. Horizontal lines show
the 5 ! limits of the IRAC Shallow Survey, FLAMEX survey, and NDWFS in 500

diameter apertures. Note a 500 aperture is larger than optimum for detection at BW

and I, and the 50% completeness limits in these bands are about 2 mag fainter.
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at least indicative of the average uncertainty in the measurement
of the parameters for the sample. Therefore, we suggest that the
average errors in the M200 and R200 values listed in Table 1 are
!35% and 12%, respectively, but that the error in a particular
cluster can be several times larger or smaller.

In Figure 4 we plot a histogram of the number of clusters as a
function of redshift in the FLS. The solid histogram shows the
distribution of all clusters, and the dot-dashed histogram shows
the distribution of clusterswithM200 > 3 ; 1014 M" (Bgc;R > 700).
Similar to the predictions of numerical simulations (e.g., Haiman
et al. 2001), the number of clusters peaks at z # 0:6. Qualitatively,
the distribution of clusters is also similar to that found byGladders
& Yee (2005) in comparable size patches; however, the cosmic
variance in the number of clusters in#4 deg2 patches is too large
to make a meaningful comparison between the selection of clus-
ters in the R$ z0 bandpasses and the R$ 3:6 !m bandpasses.

We plot the locations of the clusters superposed on the 3.6 !m
image of the FLS field in Figure 5 as open circles. Large and small
circles represent clusters with M200 > 3 ; 1014 M" and M200 <
3 ; 1014 M" , respectively, and clusters with photometric redshifts
0:1 < z < 0:4, 0:4 < z < 0:8, and z > 0:8 are plotted as blue,

Fig. 4.—Redshift distribution of clusters in the FLS. The solid histogram is for
all clusters, and the dot-dashed histogram is for clusters withM200 > 3 ; 1014 M".

Fig. 5.—The 3.6!m image of the FLSwith the positions of clusters superposed. The blue, green, and red circles denote clusters with 0:1 < z < 0:4, 0:4 < z < 0:8, and
z > 0:8, respectively. Large circles represent clusters with M200 > 3 ; 1014 M", and small circles represent clusters with M200 > 3 ; 1014 M". The size of the circles is
arbitrarily chosen for clarity and is not related to the projected size of R200 for the clusters.
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Galaxy Clusters  Sunil Golwala

• Search using 
multifrequency 
matched filter
• Separates SZ from CMB, point sources

• Early SZ cluster sample
• 169 known clusters, 20 new, 

0 < z < 0.55, 1-15 x 1014 MSun

• Clusters not resolved (7’ FHWM 
at 150 GHz), so parameter estimation 
depends on X-ray info

• Optical, X-ray, 
SZ followup
will enhance
utility

• Future 
releases
will increase
stats, go to
higher z

   Planck
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Planck Collaboration: The Planck all-sky Early Sunyaev-Zeldovich cluster sample
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Fig. 20. The 158 clusters from the Planck ESZ sample identi-
fied with known X-ray clusters in redshift–mass space, com-
pared with SPT and ACT samples fromMenanteau et al. (2010);
Vanderlinde et al. (2010), as well as serendipitous and RASS
clusters
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Fig. 21. The 158 clusters from the Planck ESZ sample identified
with known X-ray clusters in redshift–luminosity space, com-
pared with serendipiti and RASS clusters

MaxBCG catalogue near the position of Abell 1795, which is
detected in the ESZ catalogue.

9. Summary
Thanks to its all-sky coverage and to its frequency range span-
ning the SZ decrement and increment, Planck provides us with
the very first all-sky signal-to-noise selected SZ sample. This
early release sample of high-reliability SZ clusters and candi-
dates (S/N from 6 to 29) was constructed using a matched multi-
filter detection technique. It was validated using Planck-internal
quality assessment, external X-ray and optical data, and a multi-
frequency follow-up programme for confirmation relying mostly
on XMM-Newton snapshot observations. The ESZ sample com-
prises 189 candidates, of which 20 are candidate new clusters
and 169 have X-ray or optical counterparts. Of these, 162 were
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0.10

1.00

re
ds
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ft

ACT
SPT

SZ clusters observed before 2010
Planck/ESZ known and confirmed clusters

Fig. 22. The ESZ sample compared to the previously observed
SZ clusters in redshift–mass space.

observed in X-ray. Planck provides for the first time SZ obser-
vations for about 80% of the ESZ clusters and hence homoge-
neously measured SZ signal. Twelve candidate clusters in total,
out of the twenty, have been confirmed. One candidate was con-
firmed by AMI and WISE. Eleven were confirmed with XMM-
Newton, including two candidates found to be double clusters on
the sky.

The clusters in the ESZ sample are mostly at moderate red-
shifts lying between z = 0.01 and z = 0.55, with 86% of them
below z = 0.3. The ESZ-cluster masses span over a decade from
0.9 to 15×1014 M", i.e. up to the highest masses. The ESZ, con-
structed using clear selection criteria, is a nearly complete (90%
above E−2/3(z)Y5R500D2A $ 4 × 10−4 Mpc

2), high-purity (above
95%) SZ cluster sample. However, as mentioned above, it is not
possible at the present stage to provide users with a full selection
function.

Thanks to its all-sky coverage, Planck has a unique capabil-
ity to detect the rarest and most massive clusters in the exponen-
tial tail of the mass function. Planck is detecting new clusters,
in a region of the mass-redshift plane that is sparsely-populated
by the RASS catalogues. As a matter of fact, two of the newly-
discovered clusters in the ESZ and confirmed by XMM-Newton
have estimated total masses larger than 1015 M". Furthermore,
as indicated by XMM-Newton snapshot observations, most of
the new clusters have low luminosity and a disturbed morphol-
ogy, suggestive of a complex dynamical state. Planck may thus
have started to reveal a non-negligible population of massive dy-
namically perturbed objects, that is under-represented in X-ray
surveys.

A significant fraction of the ESZ clusters have good archival
X-ray and optical data. In addition, the ESZ sample should mo-
tivate follow-up effort by the community. It will hence serve as
a valuable reference for studies of cluster physics at low and
moderate redshifts (e.g., galaxy properties versus intra-cluster
gas physics, metallicities, dynamical state and its evolution,
etc). These studies will require multi-wavelength observations
including further SZ observations at higher spatial resolution
and observations in X-rays (with XMM-Newton, Chandra, and
Suzaku), in the optical (imaging and spectroscopy), and in the
radio (e.g., with LOFAR).

20

slope = 1.095
expected = 1.25

Planck Collaboration (2011)
matched filter

Planck Collaboration: Planck early results: Statistical analysis of SZ scaling relations for X-ray galaxy clusters

Fig. 4. Left: Scaling relation between Planck SZ measurements and X-ray luminosity for ∼ 1600 MCXC clusters. Both quantities
are intrinsic and scaled assuming standard evolution. Individual measurements are shown by the black dots and the corresponding
bin averaged values by the red diamonds. Thick bars give the statistical errors, while the thin bars are bootstrap uncertainties. The
bin-averaged SZ cluster signal expected from the X-ray based model is shown by the blue stars. The combination of the adopted
D2A Y500 – M500 and L500 – M500 relations (Eq. 6) is shown by the dashed blue line while the red dot-dashed line shows the best
fitting power-law to the data (Eq. 7 and Table 4). Right: Ratio between data and model bin averaged values shown in the left panel.
Error bars are as in the left panel.

Table 4. Best fitting parameters for the observed D2A Y500 – L500 relation given in Eq. 7. Values are given for three different choices
of priors and as predicted from X-rays for comparison. Both total errors from bootstrap resampling and statistical errors are quoted.

Ŷ500,L [10−3 arcmin2] α̂L β̂L
0.451 ± 0.003 stat [±0.013 tot] 1.087 (fixed) 2/3 (fixed)

Planck +MCXC 0.447 ± 0.006 stat [±0.015 tot] 1.095 ± 0.008 stat [±0.025 tot] 2/3 (fixed)
0.476 ± 0.006 stat [±0.025 tot] 1.087 (fixed) −0.007 ± 0.154 stat [±0.518 tot]

X-ray prediction 0.428 1.09 2/3

Table 6. Best fitting parameters for the observed D2A Y500 – M500 relation given in Eq. 8. Values are given for three different choices
of priors and as predicted from X-rays for comparison. Both total errors from bootstrap resampling and statistical errors are quoted.

Ŷ500,M [10−3 arcmin2] α̂M β̂M
0.896 ± 0.007 stat [±0.027 tot] 1.783 (fixed) 2/3 (fixed)

Planck +MCXC 0.892 ± 0.008 stat [±0.025 tot] 1.796 ± 0.014 stat [±0.042 tot] 2/3 (fixed)
0.945 ± 0.012 stat [±0.049 tot] 1.783 (fixed) −0.007 ± 0.154 stat [±0.518 tot]

X-ray prediction 0.850 1.783 2/3

tion. Using the simplest model (Eq. 7 or equivalently Eq. 8) we
attempt to constrain the power law index β̂L (or equivalently β̂M).
We find that the measured SZ signal is consistent with standard
evolution (see Table 4) and our constrains on any evolution are
weak. Fig. 6 shows the measured and predicted, redshift binned,
SZ signal, the expected standard redshift evolution, and the best
fitting model. The figure shows that, althoughmeasurements and
predictions agree quite well, the best fitting model is constrained
primarily by the low redshift measurements. Possible future im-
provements are discussed below in Sect. 7.

5.3. Scatter in the D2A Y500 – L500 relation

As discussed in Sect. 4.2, we find a clear indication of intrinsic
scatter in our measurements of the D2A Y500 – L500 relation. In
this section we quantify this scatter and discuss how our mea-

surement compares with expectations based on the representa-
tive REXCESS sample (Arnaud et al. 2010) and the findings re-
ported in the companion paper Planck Collaboration (2011g).

The intrinsic scatter σintr is computed in luminosity bins
as the quadratic difference between the raw scatter σraw (see
Sect. 4.2) and the statistical scatter expected from the statis-
tical uncertainties, i.e. σ2intr = σ

2
raw − σ

2
stat. The latter is esti-

mated by averaging the statistical uncertainties in a given bin,
i.e. σ2stat = N−1

∑

σ2i , where N is the number of clusters in the
bin. For a given luminosity bin, the uncertainty∆σintr on the esti-
mated intrinsic scatter are evaluated by (∆σintr)2 = σ2intr(2N (N−
1))−1

∑

(1 + (σ2i /σ
2
intr))

2.
We find that intrinsic scatter can be measured only for

L500E(z)−7/3 ! 1044erg/s, being the statistical uncertainties at
lower luminosities of the order of the raw scatter (see also Sect.
4.2). In a given bin with average signal Y, the resulting fractional

8

YSZ vs. L500

Planck Collaboration: Local galaxy cluster SZ scaling relations
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Fig. 5: Scaling relations for the 62 clusters in the Planck-XMM-Newton archive sample; fits are given in Table 2. Cool core systems are plotted as
blue stars, other systems as black dots. In the upper panels, the dotted line denotes the observed scaling relation fit. In the lower panels, the dotted
line denotes the observed scaling relation fit, while the solid line shows the fit once the effects of selection bias are taken into account. The grey
shaded area indicates the 1σ uncertainty. The SPT results are taken from Andersson et al. (2010).

unity yields a normalisation Y500/YX,500 = 0.95± 0.03, perfectly
consistent with the value 0.924± 0.004 found for the REXCESS

sample (Arnaud et al. 2010) and less than unity as expected for
radially-decreasing temperature profiles (e.g., Pratt et al. 2007).
Furthermore, the relation is quite tight (see below), and there is
no indication that cool core systems differ systematically from
the other systems.

The right-hand panel of Fig. 4 shows the relation be-
tween YX,500 and the spherically-integrated Compton parameter
D2A Y500. Note in particular that the slope of the bias-corrected
relation is completely consistent with unity, and that the intrin-
sic scatter (calculated as described above in Equations 2 and 3)

is exceptionally small, σlog,i = 0.09 ± 0.01. A comparison with
recent results obtained by SPT shows a slight difference in nor-
malisation, although it is not significant given the larger uncer-
tainties in the latter measurement (Andersson et al. 2010).

6.2. Scaling relations

In this Section we investigate other relations between D2A Y500
and X-ray quantities. Note that since M500 is derived from YX,500,
its dependence on D2A Y500 is directly linked to the D

2
A Y500 −

YX,500 relation with the exception of differing E(z) dependencies.
Moreover, Mg,500 and TX are not independent; they are related

9

XMM-Newton archive 
subset (X-ray data to 
estimate M, 
62 clusters)

6
A
nt
oi
ne
Ch
am
ba
llu
et
al
.:
Th
e
Pl
an
ck
SZ
Cl
us
te
rC
at
al
og
:E
xp
ec
te
d
X
-ra
y
Pr
op
er
tie
s

Fi
g.
4.

Co
m
pa
ris
on

of
th
e

RO
SA
T

cl
us
te
r

ca
ta
lo
g

(R
EF
LE
X
+
N
O
RA
S;

bl
ac
k)

an
d
PC
C

di
ff
er
en
tia
l
re
ds
hi
ft

di
str
ib
ut
io
ns
,s
ho
w
n
fo
rt
he
va
lu
es
of
σ
8
di
sc
us
se
d
in
th
e
te
xt
.

Th
e
PC
C
is
ex
pe
ct
ed
to
sig
ni
fic
an
tly
ex
te
nd
th
e
de
pt
h
of
al
l-s
ky

cl
us
te
rs
ur
ve
ys
.

Su
rv
ey
w
ill
th
er
ef
or
e
be
th
e
de
ta
ile
d
stu
dy
of
th
e
re
la
tio
n
be
-

tw
ee
n
SZ

an
d
X
-r
ay
pr
op
er
tie
s
aff
or
de
d
by
th
e
jo
in
t
ca
ta
lo
g.

Su
ch
a
stu
dy

w
ill
fu
rth
er
m
or
e
be
ne
fit
fr
om

th
e
fa
ct
th
at
th
e

RA
SS
cl
us
te
rs
ar
e
ge
ne
ra
lly
w
el
l-s
tu
di
ed
,a
llo
w
in
g
a
nu
m
be
ro
f

im
po
rta
nt
sc
al
in
g
re
la
tio
ns
to
be
de
riv
ed
.T
hi
sw
ill
le
ad
,f
or
ex
-

am
pl
e,
to
ad
di
tio
na
lt
es
ts
of
ou
re
m
pi
ric
al
m
od
el
an
d
ev
en
tu
al

m
od
ifi
ca
tio
ns
,a
ll
pr
ov
id
in
g
us
ef
ul
in
sig
ht
in
to
cl
us
te
rp
hy
sic
s.

M
or
eo
ve
r,
pr
io
rk
no
w
le
dg
e
of
th
e
X
-r
ay
-d
er
iv
ed
ch
ar
ac
te
r-

ist
ic
so
ft
he
se
jo
in
tc
lu
ste
rs
w
ill
en
ab
le
m
or
ep
re
ci
se
re
co
ve
ry
of

th
ei
rS
Z
pr
op
er
tie
s.
Th
is
is
no
ta
bl
y
th
e
ca
se
fo
rc
lu
ste
ra
ng
ul
ar

siz
e,
w
hi
ch
is
di
ffi
cu
lt
to
re
co
ve
rf
ro
m
th
e
Pl
an
ck
da
ta
al
on
ed
ue

to
th
e
siz
e
of
th
e
eff
ec
iv
eS
Z
be
am
.T
hi
sd
iffi
cu
lty
tra
ns
la
te
si
nt
o

no
tic
ab
ly
la
rg
er
SZ

flu
x
(Y

S
Z
)u
nc
er
ta
in
tie
s
th
an
if
cl
us
te
rs
iz
e

w
er
e
kn
ow
n
a
pr
io
ri
(M
el
in
et
al
.2
00
6)
(a
lso
,M
el
in
et
al
.2
01
0,

in
pr
ep
ar
at
io
n)
.C
lu
ste
rs
in
th
e
jo
in
tP
la
nc
k-
RO
SA
T
ca
ta
lo
g
w
ill

th
er
ef
or
e
ha
ve
sig
ni
fic
an
tly
m
or
e
pr
ec
ise
SZ
flu
x
m
ea
su
re
m
en
ts

th
an
ks
to
th
e
m
or
e
pr
ec
ise
X
-r
ay
in
fo
rm
at
io
n
on
cl
us
te
re
xt
en
t.

M
or
e
su
rp
ris
in
gl
y,
pe
rh
ap
s,
is
th
e
fa
ct
th
at
so
m
e
RA
SS
cl
us
-

te
rs
w
ill
no
tb
e
se
en
in
th
e
PC
C.
Th
es
e
te
nd
to
be
m
os
tly
lo
-

ca
la
nd
ex
te
nd
ed
cl
us
te
rs
th
at
ar
e
“r
es
ol
ve
d-
ou
t”
by
th
e
Pl
an
ck

su
rv
ey
.A
s
no
te
d
in
M
el
in
et
al
.(
20
05
,2
00
6)
,t
he

Pl
an
ck
se
le
c-

tio
n
fu
nc
tio
n
de
pe
nd
s
on
bo
th
cl
us
te
rfl
ux
an
d
ex
te
nt
.T
he
fa
ct

th
at
th
e
Pl
an
ck
se
le
ct
io
n
cu
rv
e
cu
ts
th
ro
ug
h
th
e
ob
se
rv
ed
RA
SS

cl
us
te
rs
is
ex
tre
m
el
y
im
po
rta
nt
:i
tw
ill
be
in
va
lu
ab
le
in
co
ns
tra
in
-

in
g
th
e
PC
C
se
le
ct
io
n
fu
nc
tio
n
by
pr
ov
id
in
g
w
el
l-s
tu
di
ed
cl
us
-

te
rs
th
at
fa
ll
ou
tsi
de
of
th
e
PC
C
an
d
th
er
eb
y
im
pr
ov
eo
ur
un
de
r-

sta
nd
in
g
of
th
e
se
le
ct
io
n
cr
ite
ria
.T
hi
si
sa
fo
rtu
na
te
an
d
un
us
ua
l

sit
ua
tio
n
th
at
w
e
w
ill
fu
lly
ex
pl
oi
tw
he
n
co
ns
tru
ct
in
g
th
e
PC
C.

Fi
na
lly
,a
s
ca
n
be
se
en
,w
e
ex
pe
ct
m
an
y
ne
w
cl
us
te
rs
no
t

se
en
in
th
e
RA
SS
.T
he
PC
C
sh
ou
ld
gr
ea
tly
ex
te
nd
th
e
re
ds
hi
ft

re
ac
h
of
al
l-s
ky
cl
us
te
rs
ur
ve
ys
ov
er
th
at
of
th
e
RA
SS
.T
he
ne
xt

se
ct
io
n
is
de
di
ca
te
d
to
th
es
e
ne
w
Pl
an
ck
cl
us
te
rs
.

3.
3.
XM

M
-N
ew
to
n
fo
llo
w-
up

of
th
e
ne
w
Pl
an
ck
clu

st
er
s

W
e
de
fin
e
ne
w
Pl
an
ck
cl
us
te
rs
as
th
os
e
w
ith

a
pr
ed
ic
te
d
X
-

ra
y
flu
x
in
th
e
RO
SA
T
[0
.1
,2
.4
]–
ke
V
ba
nd
le
ss
th
an

f X
=
3
×

10
−
12
er
gs
/s
/c
m
2 ,
w
hi
ch
co
rr
es
po
nd
st
o
th
e
RE
FL
EX

de
te
ct
io
n

lim
it
an
d
th
e
de
ep
es
td
et
ec
tio
n
lim
it
of
th
e
N
O
RA
S
su
rv
ey
;w
e

co
ns
id
er
th
at
al
lt
he
ot
he
rc
lu
ste
rs
ar
ec
on
ta
in
ed
in
th
eR
A
SS
ca
t-

al
og
s.
W
e
th
en
us
e
th
e
m
od
el
to
pr
ed
ic
tt
he
X
-r
ay
pr
op
er
tie
so
f

th
es
e
ne
w
cl
us
te
rs
in
th
e
XM

M
-N
ew
to
n
[0
.5
,2
]–
ke
V
ba
nd
.F
ig
.

5
sh
ow
st
he
co
nt
ou
rs
of
iso
flu
x
w
ith
in
[0
.1
5
−
1.
0]
×
r 5
00
in
th
e

XM
M
-N
ew
to
n
ba
nd
ov
er
th
e
(z
,T
)p
la
ne
fo
rt
he
se
ne
w
cl
us
te
rs
.

Th
ek
ey
po
in
ti
st
ha
tw
ee
xp
ec
ta
su
bs
ta
nt
ia
lf
ra
ct
io
n
of
th
es
e

ne
w
cl
us
te
rs
to
be
ho
t(
or
eq
ui
va
le
nt
ly
,m
as
siv
e)
an
d
di
sta
nt
;i
n

ot
he
rw
or
ds
,t
ho
se
cl
us
te
rs
th
at
ar
et
he
m
os
tu
se
fu
lc
os
m
ol
og
ic
al

pr
ob
es
.T
ab
le
2
lis
ts
qu
an
tit
at
iv
e
de
ta
ils
on
th
e
di
str
ib
ut
io
n
of

th
es
e
cl
us
te
rs
.M
or
eo
ve
r,
th
es
e
cl
us
te
rs
ar
e
pr
ed
ic
te
d
to
be
ve
ry

lu
m
in
ou
s,
w
ith
X
-r
ay
flu
x
in
th
eX

M
M
-N
ew
to
n
ba
nd
gr
ea
te
rt
ha
n

10
−
13
er
gs
/s
/c
m
2
at
al
lr
ed
sh
ift
s.

Th
e
fo
llo
w
in
g
ex
pr
es
sio
n
pr
ov
id
es
a
us
ef
ul
es
tim
at
e
of
th
e

ex
po
su
re
tim
e
t ex

p
(in
ks
)n
ee
de
d
to
m
ea
su
re
a
gl
ob
al
te
m
pe
ra
-

tu
re
to
∼
10
%
gi
ve
n
its
X
-r
ay
flu
x
in
th
e
X
M
M
ba
nd

2 :

t ex
p
=
55
×

(

f x
10
−
13
er
gs
/s
/c
m
2

)

−
1.
35

,
(9
)

W
e
se
e
th
at
an
ex
po
su
re
tim
e
of
55
ks
is
su
ffi
ci
en
t
to
ob
ta
in

a
te
m
pe
ra
tu
re
m
ea
su
re
m
en
tf
or
an
y
cl
us
te
r
in
th
e
PC
C.
Fi
g.
5

sh
ow
s,
as
ill
us
tra
tio
n,
th
eh
ist
ro
gr
am

of
th
e
nu
m
be
ro
fn
ew
cl
us
-

te
rs
w
ith
0.
8
!
z
>
1.
0
ex
pe
ct
ed
in
th
e
PC
C
as
a
fu
nc
tio
n
of
flu
x

in
th
e
XM

M
-N
ew
to
n
ba
nd
w
ith
in
[0
.1
5
−
1.
0]
×
r 5
00
.A
ll
of
th
e

cl
us
te
rs
ha
ve
flu
xe
sl
yi
ng
in
th
e
de
ca
de
be
lo
w
th
e
RA
SS
de
te
c-

tio
n
lim
it
an
d
ar
e
th
us
ea
sil
y
ob
se
rv
ab
le
w
ith

XM
M
-N
ew
to
n
or

C
ha
nd
ra
.

In
or
de
rt
o
ge
ta
n
id
ea
of
th
e
ca
pa
bi
lit
ie
s
of
XM

M
-N
ew
to
n

to
ob
se
rv
es
uc
h
cl
us
te
rs
ba
se
d
on
ac
tu
al
m
ea
su
re
m
en
ts,
w
e
re
fe
r

to
th
e
ob
se
rv
at
io
ns
m
ad
e
of
tw
o
of
th
e
fo
ur
kn
ow
n
cl
us
te
rs
w
ith

T
!
6
ke
V
an
d
0.
8
!
z
>
1.
0
an
d
co
ns
id
er
th
e
re
su
lts
ob
ta
in
ed

an
d
re
qu
ire
d
ex
po
su
re
tim
es
:

M
S
10
54
-0
32
1
(G
io
ia
et
al
.2
00
4)
:
Th
e
XM

M
-N
ew
to
n
ob
se
r-

va
tio
ns
yi
el
d
te
m
pe
ra
tu
re
,r
ed
sh
ift
(th
ro
ug
h
ob
se
rv
at
io
n
of
th
e

iro
n
lin
e
in
th
e
X
-r
ay
sp
ec
tru
m
)
an
d
flu
x
es
tim
at
es
of

T
=

7.
2+
0.
7

−
0.
6
ke
V,
z
=
0.
84
7+
0.
05
7

−
0.
04
0
an
d
f X

[0
.5
,2
]
ke
V
=
(1
.9
±
0.
09
)×

10
−
13
er
gs
/s
/c
m
2 ,
re
sp
ec
tiv
el
y;
an
d
th
ey
al
so
pr
ov
id
e
a
de
ta
ile
d

im
ag
e
sh
ow
in
g
se
ve
ra
l
co
m
po
ne
nt
s
to
th
e
cl
us
te
r’s
str
uc
tu
re
.

Th
e
eff
ec
tiv
e
ex
po
su
re
tim
e
ne
ed
ed
w
as
∼
25
ks
.

R
X
J1
22
6.
9+
33
32

(M
au
gh
an

et
al
.2
00
7)
:
Th
e
sa
m
e
qu
an
ti-

tie
sw
er
em
ea
su
re
d
in
th
is
ca
se
:T
=
10
.4
±
0.
6
ke
V,
z
=
0.
89
an
d

f X
[0
.5
,2
]
ke
V
=
3.
27
×
10
−
13
er
gs
/s
/c
m
2
(V
ik
hl
in
in
et
al
.2
00
9)
.

M
or
eo
ve
r,
th
e
ob
se
rv
at
io
n
of
th
e
te
m
pe
ra
tu
re
pr
ofi
le
,c
om
bi
ne
d

w
ith

th
e
as
su
m
pt
io
n
of

hy
dr
os
ta
tic

eq
ui
lib
riu
m
,
en
ab
le
d
a

de
te
rm
in
at
io
n
of
th
e
to
ta
lm
as
s
an
d
ga
s
m
as
s
pr
ofi
le
s,
an
d
th
us

an
es
tim
at
e
of
th
e
cl
us
te
rm
as
s:
M
50
0
=
5.
2+
1.
0

−
0.
8
×
10

14
M
$
.I
n
th
is

ca
se
,t
he
ex
po
su
re
tim
e
w
as
∼
70
ks
.

Th
es
e
cl
us
te
rs
ar
e
go
od
ex
am
pl
es
of
th
e
ki
nd
of
ob
je
ct
s
w
e

ex
pe
ct
to
fin
d
in
th
e
PC
C.
W
e
co
nc
lu
de
th
er
ef
or
e
th
at
25
-5
0
ks

ex
po
su
re
sw
ill
be
su
ffi
ci
en
tt
o
ob
ta
in
te
m
pe
ra
tu
re
m
ea
su
re
m
en
ts

to
∼
10
%
fo
ra
ny
cl
us
te
ri
n
th
e
PC
C,
ev
en
ou
tt
o
z
∼
1.
It
is
ev
en

su
ffi
ci
en
t,
in
so
m
e
ca
se
s,
to
ob
ta
in
m
as
s
es
tim
at
es
.D
et
ai
le
d
X
-

ra
y
stu
di
es
of
al
ar
ge
fr
ac
tio
n
of
th
en
ew

Pl
an
ck
cl
us
te
rs
is
he
nc
e

fe
as
ib
le
an
d
w
ou
ld
sig
ni
fic
an
tly
ad
va
nc
e
ou
r
un
de
rs
ta
nd
in
g
of

cl
us
te
rs
tru
ct
ur
e
at
in
te
rm
ed
ia
te
to
hi
gh
re
ds
hi
fts
.

2
M
.A
rn
au
d,
pr
iv
at
e
co
m
m
un
ic
at
io
n

C
ha

m
ba

llu
 e

t 
al

 2
01

0
pr

ed
ic

tio
ns

Pl
an

ck
 C

ol
la

bo
ra

tio
n 

20
11

Pl
an

ck
 C

ol
la

bo
ra

tio
n 

20
11

*Large JPL group deeply involved in Planck,
produced Early Release Compact Source Catalog



Galaxy Clusters  Sunil Golwala

CLASH

• Cluster Lensing and Supernova survey with Hubble
• 25-cluster Hubble Treasury program; 

PI: Marc Postman; JPL lead: Lexi Moustakas
• HST strong lensing, 16 filters to maximize 

photo-z determination of bgnd sources (2’ FoV), 
Subaru weak lensing (30’ FoV)

• Ancillary data includes
• Chandra and XMM X-ray (8’-30’ FoV)
• SZ: SZA 2’ resolution/30 GHz/12’ FoV, 

MUSTANG 9” resolution/90 GHz/1’ FoV
Bolocam 1’ resolution/150 GHz/8’ FoV 

• First results on 
Abell 383 out 
(Zitrin et al.)
• very precise

HST lensing
constraints!
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CLASH Strong-Lensing Analysis of A383 7

lower redshift of zs � 2 but due to the distances involved
this is in practice only a � 1% difference in the redshift
distance. These images were matched up for the first
time in this work enabled by the deep, high-resolution
HST data. Due to the variance in the SEDs and there-
fore photometric redshifts of the images of this system,
we supply also the photo-z distributions and SEDs in
Figure 9, so that the reader could more easily assess the
plausibility of this system.
Systems 6−7 : Two thin and long arcs following simi-

lar symmetry, at a relatively high redshift of z ∼ 4.5 and
z ∼ 3, respectively. Their symmetry especially with re-
gards to the critical curves, shows beyond a doubt that
these are multiply-lensed systems (see also Figure 10),
despite being too faint to measure their photometric red-
shift unambiguously. These images as well were matched
up for the first time in this work.
System 8 : A faint, wide greenish-looking arc 17�� south

east of the BCG (see Figure 3). Our model accurately
reproduces this arc as a double image. In addition, two
other small counter-images are predicted, for which we
identify the best-matching candidates in the data. These
images were matched up for the first time in this work,
and except for image 8.1 which is faint and probably
contaminated by light from a nearby cluster member,
show similar photometric redshifts of ∼ 3.8 (see also Fig-
ure 11), in agreement with our model prediction. Still,
we acknowledge the possibility that other similar look-
ing objects near-by may be the actual counter images -
especially since images 8.3 and 8.4 seem slightly brighter
than 8.1 and 8.2. Such a degeneracy however does not
affect the mass model in a noticeable way. In addition, it
should be noted that photo-z analyses of some segments
of the arc designated as 8.1 imply indeed a redshift of
∼ 3.8, similar to the other three images of this system.
Due to the variance in the SEDs and therefore photomet-
ric redshifts of these images, we supply also their photo-z
distributions and SEDs in Figure 11, so that the reader
could more easily assess the plausibility of this system.
System 9 : Two images of a multiply-lensed Lyman-

break, high redshift galaxy at zs = 6.027, reported re-
cently by Richard et al. (2011) based on CLASH imag-
ing and Keck spectra. We also identify these two images
and measure photometric redshifts of z ≈ 6.01 and 5.95.
The high redshift of this system expands substantially
the lensing-distance range thus enabling us to constrain
the profile with better accuracy, as discussed in §4.2.

4.2. Mass Profile

The inner mass profile is accurately constrained by in-
corporating the cosmological redshift-distance relation,
i.e., the lensing distance of each system based on the
measured spectroscopic or photometric redshifts. In so
doing we normalize our mass model to systems 3 and 4,
so that the normalized scaling factor, f(dls/ds), is equal
to 1 for zs = 2.55. We then make use of the z = 1.01
system, and the highest-z system at zs = 6.027, in or-
der to expand the f(dls/ds) range, along with the other
systems whose photometric or spectroscopic redshifts are
incorporated to constrain the profile. The resulting mass
profile is seen in Figure 5.
We examine how well the cosmological relation is re-

produced by our model, accounting for all systems with
spectroscopic or photometric redshifts, as shown in Fig-

Fig. 4.— 2D surface mass distribution (κ), in units of the crit-

ical density (for zs = 2.55), of A383. Contours are shown in

linear units, derived from our mass model constrained using the

many sets of multiply-lensed images seen in Figure 3. As can be

seen, the mass distribution is fairly round. Axes are in ACS pixels

(0.05��/pixel), and a 20
��

bar is overplotted. North is up, East is

left.

Fig. 5.— Radial surface mass density (κ) profile in units of the

critical surface density (for a source redshift of zs = 2.55). The in-

ner SL data were derived using the sets of multiple images shown in

Figure 3. We overplot our preliminary WL data analysis. As can be

seen, these are in very good agreement in the region of overlap. A

joint SL+WL gNFW fit yields Mvir = 6.62+0.51+0.49
−0.45−0.49×10

14M⊙/h

(or Mvir � 9.46 × 10
14M⊙) and a concentration parameter of

c−2 = 8.22 ± 0.44 ± 0.43. The parameter α = 1.045 ± 0.05, so

that the overall fit is similar to a simple NFW (see §4.2 for explicit

comparison). These values are in common with more massive well

studied clusters, and lie above the standard c–M relation, as seen in

Fig. 13. Also plotted is the 1D WL analysis of Huang et al. (2011).

A clear consistency is seen through the extensive WL range, though

our profile is more consistent with the SL data and is not under-

estimated in the inner region. A more thorough, 2D WL analysis

will be published soon (Umetsu et al., in preparation).

ure 12. The predicted deflection of the best fitting model
at the redshift of each of these systems clearly lies along
the expected cosmological relation, with a small mean
deviation of only ∆f < 0.01 (see Figure 12), strengthen-
ing the determination of the mass profile slope. In ad-
dition, we note that our mass profile shows consistency
with a recent joint lensing, X-ray ,and kinematic anal-
ysis by Newman et al. (2011), out to at least twice the

CLASH Strong-Lensing Analysis of A383 5

Fig. 3.— Galaxy cluster A383 (z = 0.189) imaged with HST/ACS. North is up, East is left. We number the multiply-lensed images

used and uncovered in this work. The numbers indicate the 27 lensed images, 13 of which correspond to 4 newly identified sources, and

the different colors are used to distinguish the 9 different sources. For more details on the each system and the robustness of the new

identifications see §4.1. The overlaid white critical curve corresponds to systems 3 and 4, at zs = 2.55, enclosing a critical area of an

effective Einstein radius of � 52 kpc at the redshift of this cluster (16.3��). Also plotted is a red critical curve, which corresponds to system

9, the drop-out high redshift galaxy at zs = 6.027. The composition of this color image is Red=F814W+F850LP, Green=F606W+F625W,

and Blue=F435W+F475W.

It should be stressed that the multiple-images found

here are accurately reproduced by our model and are not

simple identifications by eye. The parametric method of

Zitrin et al. (2009b) has been shown in many cases to

have the predictive power to find multiple images in clus-

ters. Due to the small number of parameters this model

is initially well-constrained enabling a reliable identifi-

cation of other multiple-images in the field, which can

be then used to fine-tune the mass model. Naturally,

the mass model predictions have to be identified in the

data and verified further by comparing the SEDs and

photometric redshifts of the candidate multiple-images,

especially in cases where the images are not prominently

bright and big, so that internal details cannot be reliably

distinguished. As some of the objects identified here are

faint and some may be contaminated by nearby cluster

members even after their subtraction, for the less secure

cases we supply also the photo-z distributions and spec-

tral energy distributions (SEDs) from our 16 HST-band

imaging, so that the reader could assess the plausibility of

these identifications. We now detail each multiply-lensed

system, as listed in Table 2:

Systems 1 − 2 : The prominent giant arc, nearly 20
��

long, most likely consists of two sources (systems 1 and 2

here) at the same redshift of zs = 1.01 (Sand et al. 2004,

2008; Smith et al. 2005). An additional radial counter

image is seen in the BCG halo (see also Newman et al.

2011). This system was identified by Smith et al. (2001)

in WFPC2 1-band imaging, who also spectroscopically

measured the west side of the arc to be at zs = 1.01.
Following measurement of Sand et al. (2004) with a slit

passing through the BCG, the radial arc, and the eastern

part of the main arc, yielded an identical redshift of zs =
1.01 for both as well.
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Bolocam SZ Followup

• 150 GHz/1’ FWHM/8’ FoV camera on
Caltech Submm Observatory
• Built with Bock, Nguyen at JPL, 

Glenn (CU), Lange, Golwala (CIT)
• Sayers on NPP at JPL during this work;

developed Spitzer and CLASH collaborations
• Czakon on GSRP at JPL
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Bolocam SZ Followup

• Initial 5-cluster sample (Sayers et al 2011)
• All show evidence of ellipticity in plane 

of sky;mean ellipticity = 0.27±0.03
• All fit generalized NFW well except 

A697, which shows NE/SW asymmetry
• Sensitivity out to rvir at high z

• 40 clusters reduced, scaling relation in hand
30
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Bolocam SZ Followup

• Joint deprojection with X-ray data
• Ameglio et al 2007, 2009, work w/Pierpaoli and Ameglio at USC
• Assume onion-skin structure for cluster and fit density 

and temperature model to observed data
• Apply regularization to likelihood to minimize 2nd derivative
• Gives TX profile without X-ray spectroscopy; mass-weighted and 

unbiased; ne also recovered very precisely and accurately
• Gives M(r) using hydrostatic equilibrium; small biases
• Other deprojection methods also possible (e.g., Abel integral)

31

Joint deprojection of SZ and X-ray images 399

Some of the detailed methods applied to numerical cluster mod-
els account for the presence of a realistic noise in the tSZ and X-ray
maps. However, they generally do not present any detailed assess-
ment of how this noise determines the uncertainties in the depro-
jected profiles, which ultimately characterize the ICM thermody-
namics. Having a good control on the errors is especially crucial in
any deprojection technique, since errors at a given projected sep-
aration affect the deprojected signal in the inner regions, thereby
introducing a non-negligible covariance in the reconstruction of the
three-dimensional profiles.

In this paper, we discuss a method to recover the three-
dimensional temperature and gas density profiles from the joint de-
projection of X-ray surface brightness and spatially resolved tSZ
data, testing its performance against idealized spherical clusters
and full cosmological hydrodynamical simulations. This method
is based on the assumption of spherical symmetry, but do not as-
sume any specific model for the gas density and temperature pro-
files. We will describe two different implementations. The first one
is analogous to that already applied to deproject spectroscopic X-
ray data (e.g. Kriss, Cioffi & Canizares 1983) and is based on as-
suming an onion-like structure of the cluster, in which projected
data of X-ray and tSZ ‘fluxes’ are used to recover gas density and
temperature in the external layers and then propagated to the in-
ternal layers in an iterative way. The second implementation is
based instead on a multiparametric fitting procedure, in which
the fitting parameters are the values of gas density and tempera-
ture within different three-dimensional radial bins. The values of
these parameters are then obtained through a MCMC maximum-
likelihood fitting by comparing the resulting projected X-ray and
tSZ profiles to those obtained from the maps. As we will dis-
cuss in detail, this second method naturally provides the error
correlation matrix, which fully accounts for the covariance between
error estimates at different radii and among different (i.e. gas den-
sity and temperature) profiles. The quality of the X-ray data re-
quired by our methods is basically already available with the cur-
rent generation of X-ray telescopes. As for the tSZ data, exploiting
the full potentiality of the deprojection requires spatially resolved
data. For illustrative purposes, we will assume the forecast observ-
ing conditions and sensitivity of the CCAT (Sebring et al. 2006,
see also http://www.submm.caltech.edu/∼sradford/ccat/doc/2006-
01-ccat-feasibility.pdf), although our computations can be easily
repeated for other telescopes.

The plan of the paper is as follows. In Section 2, we describe the
two implementations of the deprojection method, while we describe
in Section 3 their application on a spherical polytropic β-model.
Section 4 presents the results of the analysis on the hydrodynamical
simulations of clusters. The main conclusions of our analysis are
summarized in Section 5.

2 T H E M E T H O D S O F D E P RO J E C T I O N

2.1 The geometrical deprojection technique

The first method that we apply to recover the three-dimensional
profiles of temperature and gas density is based on a geometrical
technique originally introduced by Kriss et al. (1983), and subse-
quently adopted by, for example, Buote (2000), Ettori, De Grandi
& Molendi (2002) and Morandi, Ettori & Moscardini (2007) to de-
project X-ray images and spectra of galaxy clusters. This method
of geometrical deprojection is fully non-parametric and allows to
reconstruct the three-dimensional profile of a given quantity from

Figure 1. Illustration of the onion-skin model adopted for the geometrical
deprojection (see text in Section 2.1; adapted from McLaughlin 1999).

its two-dimensional observed projection, under the assumption of
spherical symmetry.

Following Kriss et al. (1983), the cluster is assumed to have an
onion-like structure (see Fig. 1), with N concentric spherical shells,
each characterized by uniform gas density and temperature within
it. Therefore, the cluster image in projection is divided into rings,
which are generally assumed to have the same radii of the three-
dimensional spherical shells. Let us define εi as the signal to be
recovered from the deprojection method within the ith shell. In our
analysis, εi will be proportional to either neTe for the tSZ signal or
to n2

e #(T) for the X-ray emissivity. In this way, the contribution of
the ith shell to the surface brightness4 in the ring j of the image will
be given by si,j = εi Vi,j/Aj , where the matrix Vi, j has as entries the
values of the volume of the shell i which is projected on the ring j,
whose area is Aj . By definition, si,j = 0 for j > i. Accordingly, the
surface brightness S′

j in the ring j can be obtained by summing up
the contributions from all the shells,

S′
j = 1

A j

N∑

i= j

si, j = 1
A j

N∑

i= j

εi Vi, j , (1)

where the sum extends over the N radial bins. The deprojection
amounts to invert the above equation, i.e. to recover the values of
εi from the observed projected signal S′

j . We refer to Fig. 1 to illus-
trate how this deprojection is performed in practice. Let the shell i,
limited by ri and ri+1, be the outermost one. Then, from the surface
brightness S′

i in the ring i (limited by Ri and ri+1), one can directly
compute the emissivity of the shell i simply by knowing the volume
of the region (a) and the area of the ring. In this case, the sum in

4 For the sake of clarity, we indicate here with surface brightness the projected
quantity, which can be both a genuine X-ray surface brightness and the tSZ
signal.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 382, 397–411
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Cluster SZ with MUSIC

• MUlticolor Sub/millimeter Inductance Camera: deploying late 2011
• New technologies enable ~background-limited, multi-color camera 

(850 µm - 2 mm) with wide FOV (14’, 600 spatial pixels)
• Large-format planar photolithographic phased-array antennas: ~2:1 bandwidth
• Planar photolithographic bandpass filters: many colors from a single antenna
• Microwave Kinetic Inductance Detectors (MKIDs): a new, highly multiplexable 

detector (Day, LeDuc, Zmuidzinas)

• Deeper integrations on CLASH, ~200 clusters based on Planck, WISE, ACT

32
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Figure 4: Left: expected azimuthally-averaged radial profile measurement for a MS0451-like cluster (z =

0.55, Mgas = 1.6 × 1014 M⊙, and r500 = 1.45 Mpc) in the deep sample. The error bars will be about

3 times larger for high-statistics-sample measurements. Right: simulation of a YSZ-Mgas scaling-relation

measurement in 150 clusters from the large sample assuming 5% errors on YSZ and 10% errors on Mgas.

The statistical uncertainties on the power law normalization and index are at the 3% level.

3 Broader Impacts

We will publicly release the survey data sets (calibrated maps, source catalogs, analysis transfer

functions) and the analysis pipeline that works from raw timestreams to produce maps and transfer

functions (see Section 5.6). Large amounts of additional science will thus be enabled, as will general

use of MUSIC unrelated to our surveys. The CSO-supported postdoc working under Golwala’s

supervision will serve as MUSIC instrument scientist, training the user community on MUSIC.

MUSIC will strengthen the development and scientific exploitation of two facilities that received

strong endorsements in the Astro2010 report: ALMA and CCAT. Most obviously, MUSIC will

provide targets for followup with ALMA. Since MUSIC will be the most capable sub/mm survey

instrument with substantial direct access by the U.S. community (50% of the CSO’s time is open)

until CCAT (expected ∼ 2018-2020), it will improve the U.S. community’s competitiveness in

ALMA proposal reviews. MUSIC’s SZ science will also motivate construction of ALMA Band 1

receivers, for which SZ science is a major driver. MUSIC will guide the development of CCAT,

which has been highly recommended in Astro2010 and is expected to have substantial federal

investment, by measuring the DFSG redshift distribution — a key input to the refinement of the

parameters of CCAT’s spectroscopic instrument suite.

Our program also has substantial scientific educational impacts. A number of postdocs and

graduate students will be supported directly or will be able to participate in the science. All will

become potential users of ALMA. This project will increase the number of students and postdocs

with hands-on commissioning and observing experience, a valuable resource for the U.S. astro-

nomical community in an increasingly “queue-dominated” era. Collectively, the PIs have a strong

record of mentoring early-career female scientists (one postdoc, eight graduate students, and five

undergrads).

We have a number of ongoing outreach activities in which the students and postdocs will become

involved. The Caltech Classroom Connection partners Caltech scientists with local school teachers

for regular class visits and student interaction, promoting science and engineering as an attractive

career option and demystifying science and scientists. Caltech will employ an undergraduate during

the academic year (10 hrs/week) to coordinate and participate in this effort. Caltech will also host

a Minority Undergraduate Research Fellowship program student each summer. The U.S. Planck
Data Center has a visiting teachers education program wherein a few science teachers come with

Project Description – 10

azimuthally averaged radial profile expected for
deep integration on MS0451-like cluster

~rvir

scaling relation determination

Technologies dev’d 
w/support from 
Caltech trustee 

Alex Lidow, 
JPL RTD, NASA, 

Moore 
Foundation.

Camera dev’d w/
NSF, Moore 
Foundation 

support
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MUSIC Galaxy Cluster Studies

• Study galaxy clusters across wavelength regime where SZ gives way to 
DSFGs; separate SZ, CMB, and DSFGs using multicolor information.

input DSFGs
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The MUSIC Team

• Instrument Team
• CU: Jason Glenn, Phil Maloney, James Schlaerth (past GSRP)
• JPL: Peter Day, Rick LeDuc, Hien Nguyen
• Caltech: Nicole Czakon (GSRP), Tom Downes, Ran Duan, Sunil Golwala, Matt 

Hollister (NPP), Dave Miller, Omid Noroozian, Jack Sayers (past NPP), Seth Siegel, 
Tasos Vayonakis, Jonas Zmuidzinas

• UCSB: Ben Mazin, Sean McHugh

• Survey Team
• Arizona: Dan Marrone
• JPL/Caltech: Ranga-Ram Chary
• CU: Alex Conley
• Rutgers: Andrew Baker

• Science Team
• Caltech: Andrew Benson
• CU: Nils Halverson
• JPL/IPAC/Caltech: Colin Borys, Darren Dowell, Olivier Dore
• USC: Elena Pierpaoli

34
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Next-Generation X-Ray Observatories

• Cluster studies at higher z will soon become limited by X-ray followup
• e.g. z = 1.45 XMMXCS J2215.9-1738: 

TX = 7.4 keV +/- 20% with ~200 ksec XMM-Newton time, 1100 photons detected!
• Need: higher throughput, better energy resolution for spectral lines, lower bgnd

• Astro-H
• Increased Aeff at high E:

more sensitive to high TX

• ∆E/E ~ 0.1% (1-2% for 
Chandra/XMM): new sensitivity to turbulence

• eROSITA
• First all-sky 

survey since 
ROSAT (early 
1990s), 30x
better sensitivity

• Clusters to z > 1!

• IXO...
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Next-Generation SZ with CCAT

36

• Cerro Chajnantor, Atacama, Chile, 5600m 
• Cornell, Caltech/JPL, + partners (incl. Canada, Colorado, Germany)
• Wavelengths 2-0.2 mm, Frequencies 150-1500 GHz 
• Surface accuracy 10 µm
• 25-m; angular resolution 2-20” 
• Facility instruments: 

• Large FoV submm/mm cameras
• Multi-object spectroscopy

• Coincident with ALMA
• www.submm.org 
• Substantial JPL technical

and scientific involvement
on primary deformation control and science from star formation to
cosmology

http://www.submm.org
http://www.submm.org
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Next Generation SZ with CCAT

• Vital characteristics
• Site much better than Mauna Kea
• Larger dish (25 m vs. 10 m CSO)
→ 0.4’ at 150 GHz, 0.2’ at 275 GHz

• Large Atel ΩΩFoV product; FoV = 1o

• SZ: Higher angular resolution followup 
of clusters from wide-area surveys
• good angular resolution out to Rvir

• better sensitivity to point sources
• cluster substructure and calibration

• Instrumentation: MUSIC follow-on
• Cover 5-6 colors in each pixel, 

750 µm to 2 or 3 mm
• Multiscale pixels to match pixel

size to Airy function (wider bandwidth)
• New channelizer concept?  Enormous 

spectral information.

37

Band
GHz
(µm)

Δν
(GHz)

Pixel
Size
f⋅λ

Number of Spatial
Pixels

150 (2000) 30 2.3 16 tiles × 64 = 1024

220 (1400) 40 3.2 16 tiles × 64 = 1024

275 (1100) 50 2.1 16 tiles × 256 = 4096

350  (870) 40 0.7
2.8

4 tiles×4096 = 16384
12 tiles × 256 = 3072

405 (740) 30 0.8
3.2

4 tiles×4096 = 16384
12 tiles × 256 = 3072

Total 45,056 detectors
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Questions, Questions, Questions

38

How is the kinetic energy of infalling gas thermalized?

What is the baryon fraction as a 
function of radius and redshift?

How are the baryons divided among 
stars, cold gas, and hot gas?

Does the dark matter profile evolve with time?
Is it reflective of the redshift of formation?

What is the microscopic 
plasma physics of the ICM:

thermal conductivity, viscosity, 
electron-ion equilibration time?

Does the ICM have bulk motions?
What do they tell us about

the cluster assembly history?

How much does the ICM deviate from
hydrostatic equilibrium?

What is the size and cause of
temperature gradients in the ICM?

Is the ICM stable against 
convective instability?

Is the ICM turbulent?  Why?

What is the form and effect of feedback 
from galaxies (AGN, winds, cosmic rays?)

What is the role of radiative cooling?

How did cluster magnetic fields come
into existence and evolve?

What is the cosmic ray content of the ICM?
What impact does it have on the 

thermodynamics?

What is the magnetohydrodynamics of 
the ICM, and how does it affect the 

plasma’s properties?

How do scaling relation parameters depend
on formation history and current 

morphology?

How much dark matter
substructure is preserved?

What is the metallicity as a 
function of radius and redshift?

What are the systematic limits on our ability to constrain cosmology with clusters?
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Scaling Relations: X-ray Only

40
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F��. 7.— Calibration of the M − T relation using X-ray hydrostatic mass
measurements for a sample of 10 relaxed Chandra clusters with the tempera-
ture pro�le measurements extending to r = r500. �e mass measurements are
taken from V06 with 4 additional clusters (see § 4), the temperatures match
our de�nition of TX (see § 4.1.1). �e dashed line shows the best-�t power law
relation (parameters given in Table 3).

self depends on the typical temperature in the spectrum (Maz-
zotta et al. 2004; Vikhlinin 2006). �erefore, we expect trends
in the TX�TX ,2 ratio even if the scaled 3-dimensional tempera-
ture pro�les for low and high-T clusters are identical.

4.1.2. Calibration of Mtot − TX Relation at Low Redshi�s using
Relaxed Clusters

For 17 low-redshi� relaxed clusters, there exist very high-
quality Chandra observations, providing temperature pro�les
extending su�ciently far to permit hydrostatic mass estimates
at r = r500 (see introduction to § 4). �ese observations are a
basis of our calibration of theMtot−TX relation at low redshi�s.
�e mass and temperature measurements for these 17 clusters
(Fig.7) are �t to the power law,

M = M0 E(z)−1 (T�5 keV)α , (6)
normalized at T = 5 keV because this is approximately theme-
dian temperature for this sample and therefore the estimates
for M5 and α should be uncorrelated. �e �t is performed us-
ing the bisector modi�cation of the Akritas & Bershady (1996,
and references therein) linear regression algorithm that al-
lows for intrinsic scatter and nonuniformmeasurement errors
in both variables. �e uncertainties were evaluated by boot-
strap resampling (e.g., Press et al. 1992), while simultaneously
adding random measurement errors to M and T . �e results
are shown in Fig. 7 and the best-�t parameters of the power law
�t are reported in Table 3.�e best-�t slope, 1.53±0.08 is con-
sistent with the expectation of the self-similar theory (eq.4).
Fixing the power law slope at 1.5 does not signi�cantly reduce
the uncertainty in the normalization (Table 3). �e normal-
ization of the M − T relation independently derived from the
XMM-Newton observations (Arnaud et al. 2005) agrees with
our results.
Our procedure for hydrostatic Mtot estimates was fully

tested using mock data from the simulations in Nagai et al.
(2007b). �is work shows that the inaccuracies introduced by
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F��. 8.—�e fraction of clusters which could be classi�ed as “relaxed” based
on their observed X-ray morphology (presence of secondary peaks, large cen-
troid shi� etc., see § 4.1.3), as a function of z.

the X-ray data analysis — e.g., those related to departures of
the cluster body from spherical symmetry — are small. �e
dominant source of error are departures from equilibrium and
non-thermal pressure components— the e�ect fundamentally
missed by the X-ray hydrostatic mass estimates. For example,
the residual random gas motions in “relaxed” clusters in the
Nagai et al. sample seem to result in a 10–20% underestima-
tion ofMtot near r = r500. Unfortunately, direct measurements
of the ICM turbulence (and other non-thermal pressure terms)
presently are unavailable. We thus face a dilemma: should we
use the theoretical modeling to estimate corrections to the X-
ray mass estimates, or should we rely only on observations?
Our choice is to follow the philosophy outlined in the intro-
duction to §4 and to use the corrections suggested by simu-
lations as an estimate of the systematic errors. A better esti-
mate (9%) for the systematic uncertainties in theChandra clus-
ter mass scale can be obtained from comparison of X-ray and
weak lensing mass measurements, see § 4.3.1 below.

4.1.3. Transfer of Mtot − TX Calibration to Entire Population
�e simulations suggest a systematic o�set in the normaliza-

tion of theMtot−TX relation for relaxed and unrelaxed clusters,
in the sense that the merging clusters tend to have lower tem-
peratures for the samemass (Mathiesen&Evrard 2001, KVN).
Since our calibration of theMtot − TX is for a subsample of re-
laxed clusters, we need a procedure to transfer this calibration
for the entire population that contains both relaxed andmerg-
ing clusters. �is can be achieved using a simple, �rst-order
correction outlined below.
First, we note that the systematic o�set in the Mtot − TX re-

lation cannot be measured directly using the X-ray data. Ul-
timately, it can be measured with a weak lensing analysis of a
large sample.�e results presented inKVN (their Table 2) sug-
gest that the o�set is (17± 5)% in mass for a �xed TX . �ere is
no obvious trend of this o�set with redshi�, or the di�erence
in the slope of the relations for relaxed and merging clusters.
Most importantly for our application, this o�set can lead to
departures from self-similar evolution in the Mtot − TX rela-
tion for the entire cluster population, because the fraction of

Mtot vs. TX

CHANDRA CLUSTER COSMOLOGY PROJECT. II. 15

constraints is the redshi�-dependent uncertainty. Within our
redshi� range, it can be estimated as 5–6% (§ 4.2.2).
�e object-to-object scatter in theMgas-based total mass es-

timates can be easily derived from the analysis of mock X-ray
data for simulated clusters. �is was done in Kravtsov et al.
(2006) and Nagai et al. (2007b), who �nd that the scatter in
the Mtot − Mgas relation is approximately 11% in Mtot for a
given Mgas. Most of this scatter results from the X-ray analy-
sis, as intrinsic scatter of the gas mass for a �xed total mass in
simulated clusters is < 5%.

4.3. Mtot − YX Relation
�e �nal Mtot proxy we use is the most robust X-ray mass

estimator proposed by KVN.�e quantity, YX , is de�ned as

YX = TX ×Mgas,X , (10)

where TX is the temperature derived from �tting the clus-
ter X-ray spectrum integrated within the projected radii
0.15 r500 − 1 r500, and Mgas,X is the hot gas mass within the
sphere r500, derived from the X-ray image.
�e quantity that YX approximates is the total thermal

energy of the ICM within r500, and also the integrated
low-frequency Sunyaev-Zeldovich �ux (Sunyaev & Zeldovich
1972). �e total thermal energy, Y , was found in the simula-
tions to be a very good indicator of the total cluster mass (da
Silva et al. 2004; Motl et al. 2005; Hallman et al. 2006; Nagai
2006). In the simplest self-similar model (Kaiser 1986, 1991),
Y scales with the cluster mass as

Mtot ∝ Y 3�5 E(z)−2�5 (11)

(e.g., KVN). �is scaling is a consequence of the expected
evolution in the Mtot − T relation (eq.[4]) and the assump-
tion of the self-similar model that fg is independent of clus-
ter mass. Hydrodynamic simulations show that the expected
scaling [11] is indeed valid, andmoreover, the relation shows a
smaller scatter inM for �xed Y than, e.g., theM −TX relation.
�e primary reason is that the total thermal energy of the ICM
is not strongly disturbed by cluster mergers (Poole et al. 2007),
unlike TX or X-ray luminosity (Ricker & Sarazin 2001).
It is reassuring that the Mtot − Y scaling also appears to be

not very sensitive to the e�ects of gas cooling, star formation,
and energy feedback (Nagai 2006)— these e�ects do not a�ect
the power slope or the evolution law, although change some-
what the overall normalization. �e stability of Y is primarily
explained by the fact that gas cooling tends to remove from
the ICM the lowest-entropy gas (Voit & Bryan 2001), increas-
ing the average temperature of the remaining gas and thus af-
fecting TX and Mgas in opposite ways. Direct hydrodynamic
simulations of Nagai et al. (2007a) con�rm this expectation.
As discussed in KVN, the X-ray proxy, YX , is potentially

evenmore stablewith respect to clustermergers than the “true”
Y . In the post-merger state, for example, the temperature and
thus Y is biased somewhat low because of incomplete dissipa-
tion of bulk ICM motions. �e same bulk motions, however,
cause the gas density �uctuations, which leads to an overesti-
mation ofMgas from theX-ray analysis (Mathiesen et al. 1999).
�erefore, the merger-induced deviations of the average tem-
perature and derived Mgas are anti-correlated and hence par-
tially canceled out in YX . Even the strongest mergers in the
simulated cluster sample used in KVN do not lead to large
deviations of YX from the mean scaling. �ere is also no de-
tectable systematic o�set in the normalization of theMtot−YX
relations for relaxed and unrelaxed clusters. �e upper limit
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F��. 11.— Calibration of the Mtot − YX relation. Points with errorbars show
Chandra results from Vikhlinin et al. (2006) with 4 additional clusters (§ 4).
Dashed line shows a power law �t (excluding the lowest-mass cluster) with
the free slope. Dotted line shows the �t with the slope �xed at the self-similar
value, 3�5 (parameters for both cases are given in Table 3). Open points show
weak lensing measurements from Hoekstra (2007) (these data are not used in
the �t); the strongest outlier is A1689 (open star), a known case of large scale
structures superposed along the line of sight.

for the di�erence in Mtot for �xed YX within the KVN simu-
lated sample is 4% (see their Table 2).
Since YX is so insensitive to the cluster dynamical state, it

is straightforward to calibrate theMtot − YX relation using the
sample of Chandra clusters from V06, and then it is reason-
able to assume that the same relation is also valid for unre-
laxed clusters. �e observed Mtot − YX relation does follow
very closely the expected self-similar scaling of eq. 11 (Fig. 11;
see also Arnaud et al. 2007). �e best-�t power law is

M E(z)2�5 ∝ Y 0.53±0.04
X (12)

when all clusters are included. �e marginal deviation of the
slope from a self-similar value of 3�5 is driven primarily by
the lowest-temperature cluster (MKW4), for which both the
total mass and YX measurements are most uncertain. Exclud-
ing this cluster (its Mtot is in any case smaller than the lower
mass threshold in the cluster mass functions in our samples),
the power law �t becomes

M E(z)2�5 ∝ Y 0.57±0.05
X , (13)

fully consistent with the self-similar relation (shown by a
dashed line in Fig. 11). We use the latter �t for the YX-based
cluster mass estimates. Note that Sun et al. (2008) �nd a slope
of 0.57 when they �t jointly their galaxy group sample with the
V06 clusters, supporting the notion that the MKW4measure-
ment can be ignored. �e normalization constant is provided
in Table 3 (it is consistent with theXMM-Newton results of Ar-
naud et al. 2007). Note that the h-dependence of the normal-
ization constant in the Mtot − YX relation is ∝ h1�2, di�erent
from the usual h−1 in, e.g., the Mtot − TX relation. �is is the
consequence of the h-dependence of the X-ray Mtot and Mgas
estimates, see KVN for details.
�e overall uncertainties of the calibration of the Mtot − YX

are identical to those for theMtot−TX relation (see § 4.1), with
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F��. 12.— Results for the mass-luminosity relation withMtot estimated from YX . Le� panel shows the correlation for low-redshi� clusters (black points) with the
best-�t power law relation.�e red points show the data for high-z clusters with the luminosities corrected for the evolution [E(z)γ]. All luminosities are corrected
for the expected Malmqiust bias (see Appendix A.2). Right: Evolution in the normalization of the LX −M relation. Individual measurements have been corrected
for Malmquist bias and divided by the best-�t low-z relation. Solid and dotted lines show the best �t in the form E(z)γ and (1 + z)γ , respectively. In both panels,
the clusters with large correction (∆ ln L > 0.5) are shown with open symbols. �e lack of a systematic o�set between clusters with the estimated strong and weak
Malmquist bias proves that the correction has been applied correctly. �e z > 1 clusters in this panel are from the RDCS survey (Tozzi et al. 2003); they were not
used in the �t and are shown only to demonstrate that the extrapolation of our best-�t E(z)γ evolution to higher redshi�s still produces reasonable results.
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F��. 13.— Distribution of the deviations from the mean LX − M relation
for the low-z sample (where the contribution of measurement uncertainties
is negligible). Solid line shows the best-�t log-normal distribution with the
scatter σln L = 0.396.
evolution law is not crucial for our purposes since we use the
LX − M relation only to estimate the survey coverage at each
redshi� and not to estimate the cluster masses. �e e�ect of
the choice of the parametrization on the derived V(M) is dis-
cussed below.
�e observed deviations from the mean relation at low red-

shi�s (Fig. 13) are consistent with the log-normal distribution
with a scatter of σln L = 0.396 (or ≈ ±48%) in LX for �xed
M. �e contribution of the measurement uncertainties to this
scatter is negligible for low-z objects. �e expected scatter in

the Mtot estimates using YX is also signi�cantly lower. �ere-
fore, it is reasonable to expect that the observed scatter is a
good representation of that in the relation between LX and true
mass. �e current data quality is insu�cient to characterize
the shape of the scatter distribution precisely. For example, we
cannot check if the tails of the distribution are consistent with
the log-normal model.�e knowledge of tails in the P(LX �M)
distribution is crucial if one uses LX as a proxy for cluster mass
(Lima&Hu 2005). In our case, however, the LX−M relation is
used only for the survey volume calculations, where the e�ects
of the P(LX �M) are minor (see § 5.1.3 below).
�e observed 48% scatter in the LX−M relation implies that

Malmquist bias e�ects are very signi�cant. For example, in a
purely �ux-limited low-z sample, the average bias in the lu-
minosity for �xed M is ∆ ln L = 0.235 or 27% (see eq.[A4] in
Appendix A.1). �is is qualitatively similar to the conclusions
of Stanek et al. (2006), although our predicted bias is lower be-
cause Stanek et al. have assumed a larger scatter in the LX −M
relation than that observed in our data.

5.1.3. Results for V(M)
With the model for the LX − M relation at hand, we can

now compute the search volumes as a function of cluster mass
(eq.17–15). �e results for our local sample and the three red-
shi� bins in the 400d sample are shown in Fig. 14.�e volume
for the local sample follows a power law function of M in a
broad range of masses, as expected for a �ux-limited sample.
A sharp decline of the volume at M � 1.5 × 1014 M⊙ is due to
a combination of the �ux threshold and a lower redshi� cut-
o� of the sample (z > 0.025). �e sample becomes volume-
limited for high masses because we imposed an upper cuto�
(z < 0.25) in the volume calculation. For the three high-z sub-
samples shown in Fig. 14, the dynamic range in z is smaller and
the transition from the volume-limited to strongly incomplete
regimes is much sharper.
We should now discuss how sensitive the survey volume

slope = 1.61
expected = 4/3 

Vikhlinin et al 2009

LX vs. Mtot

slope = 3/2
expected = 3/2

Vikhlinin et al 2009

dotted = 3/5
expected = 3/5

Vikhlinin et al 2009
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Figure 2. Joint 68.3 and 95.4 per cent confidence regions on parameters of the minimal (7 parameter) scaling relation model from XLF data (purple) and from
the combination with independent cosmological data (gold, Section 2.4). Left-hand panel: normalizations of the nominal luminosity–mass and temperature–
mass relations. The degeneracy is principally due to the fact that both parameters correlate with the overall mass scale set by fgas. Centre panel: slope and
marginal intrinsic scatter of the luminosity–mass relation. Right-hand panel: same as for the temperature–mass relation. The combination with other data is
not shown in this panel, since the results are very similar (Table 7).

Figure 3. Mass, luminosity and temperature data for our cluster sample. Note that the data are adjusted with factors of E(z) appropriate for the best-fitting
cosmology (Paper I), not the reference cosmology. Also shown are the best-fitting, nominal luminosity–mass and temperature–mass power-law relations (solid,
red lines) and the results of fits to the data with the BCES Y|X and X|Y methods (purple lines, respectively dashed and dot–dashed). The best-fitting values
of the intrinsic scatter in each relation, σ"m and σtm, are indicated by the orange points with error bars in the lower right corner of each panel. The seemingly
low normalization of our luminosity–mass fit compared with the data reflects the effects of Malmquist and Eddington biases on the sample, which are not
accounted for in the BCES fits. Plotted error bars do not include the contributions due to systematic uncertainty in fgas, or uncertainty in the overall instrument
calibration, although these are included in the analysis. The correlation between luminosities and masses measured from the same X-ray data are accounted
for (see Paper I); this small correlation (ρ ≈ 0.3) is illustrated by the blue ellipse in the left-hand panel, which shows the (joint, 68.3 per cent confidence) error
ellipse for one cluster. There is no correlation between measured temperatures and masses, using our procedure (Section 2.2).

fitted parameters, even at z = 0. The stochastic relation is

P (t |") = P (", t)
P (")

=
∫

dmP (", t |m)P (m)∫
dmP ("|m)P (m)

, (8)

where P(", t|m) is the bivariate scaling relation, P("|m) is the
marginal luminosity–mass relation, and P(m) is proportional to the
mass function. Thus, a detailed prediction for the temperature–
luminosity relation requires specifying a set of cosmological pa-

rameters.15 Defining the nominal relation

〈t(")〉 = β t"
0 + β t"

1 " (9)

with normal intrinsic scatter σ t", we find β t"
0 = 0.55 ± 0.08, β t"

1 =
0.30 ± 0.08 and σ t" = 0.08 ± 0.02. Since the dependence of these

15 We note that the common practice of, e.g., estimating the temperature–
luminosity slope as β tm

1 /β"m
1 corresponds to the case of a flat mass function,

and is therefore biased.
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Figure 5. Total mass and YX = MgaskTce are plotted for our best-fitting
cosmology (Paper I) and compared with the YX–mass relation predicted
by the best-fitting temperature–mass relation and fgas value. The intrinsic
scatter, indicated by the orange point with error bars, is similar to that of
the temperature–mass relation (∼0.05). Note that the X and Y error bars are
correlated, since Mgas is used to compute both YX and the total mass, M500.
To illustrate this correlation (ρ ≈ 0.85), the (joint, 68.3 per cent confidence)
error ellipse is shown in blue for the rightmost cluster.

(i) the number of clusters detected;
(ii) the two-dimensional distribution of clusters in redshift and

survey flux;
(iii) the marginal distribution of luminosities from follow-up ob-

servations given the mass and redshift measurements and
(iv) the marginal distribution of temperatures from follow-up ob-

servations given the measurements of mass, luminosity and redshift.

The number of clusters in each sample is straightforwardly Pois-
son distributed. For each sample, we define a significance value as
the probability of finding a number of clusters that is at least as
discrepant from the predicted mean as the measured value.

To test the survey flux-redshift distribution of sources, we use
a two-dimensional analog of the Kolmogorov–Smirnov (KS) test
due to Peacock (1983) and Fasano & Franceschini (1987, see also
Press et al. 1992). Briefly, the test involves comparing the predicted
and detected numbers of clusters in each of the four quadrants
(z ≥ ẑ, F ≥ F̂ ; z < ẑ, F ≥ F̂ ; etc.) about each cluster detection,
(ẑ, F̂ ). The maximum discrepancy between these predictions and
measurements is compared with a modification of the Kolmogorov
D distribution to obtain the associated significance.

The goodness of fit of the marginal luminosity–mass relation is
tested by comparing the luminosities measured in the follow-up
observations, "̂, to their predicted distribution given the measured
masses and redshifts, m̂ and ẑ, and the detection of the cluster,
indicated by I. This density, P ("̂′|ẑ, m̂, I ), is closely related to the
probability associated with a detected cluster in the likelihood func-
tion (see Appendix B), the principle difference being that the survey
flux measurement should not be taken into account here. That is,
the predicted distribution of "̂ accounts for the mass function, the
measured mass with its statistical error, and the selection bias. How-
ever, it should not account for the specific flux value measured in
the survey, or the expression would reduce to a test of how well the

Table 10. Significance values for each goodness-of-fit
test applied to each cluster sample. Very low values
(<0.01) would indicate that the model is inadequate to
describe the data (though, formally, the probability of
randomly obtaining some low values in a sample of 12
would need to be taken into account).

Test BCS REFLEX MACS

Number 0.73 0.69 0.21
Redshift-flux 0.18 0.78 0.79
Luminosity–mass 0.42 0.93 0.35
Temperature–mass 0.19 0.28 0.92

two flux measurements agree. This distribution can be calculated
numerically as a function of "̂′ and compared with the measured val-
ues, "̂. Since the shape of P ("̂′|ẑ, m̂, I ) is slightly different for each
cluster, these residuals are not individually statistically meaningful.
However, the cumulative values C =

∫ "̂

0 P ("̂′|ẑ, m̂, I )d"̂′ will be
distributed uniformly on [0, 1], provided that the predicted distri-
butions are accurate, independent of the fact that those distributions
are not identical. Thus, we can test whether the fit is a consistent
description of the luminosity–mass relation by checking whether
these C values are uniformly distributed, using a one-sample KS
test. An analogous procedure is used to test the residuals of the
temperature–mass relation.

For the purpose of this goodness-of-fit test, we use the set of
parameters producing the highest-likelihood sample in the Markov
chains; this need not be precisely the mode of the posterior distri-
bution, but should be adequate for the purpose of testing the fit. The
12 significance values (four tests for each of the three cluster sam-
ples) obtained through the procedure described here are displayed
in Table 10. None of the individual tests produced a sufficiently low
significance value (<0.01) to indicate an inadequacy in the model.
We note that if, for example, one test had produced a very small
significance, it would still need to be interpreted in the context of
the larger goodness-of-fit test; that is, the likelihood of randomly
obtaining one low significance value out of 12 would need to be
taken into account.

5.3 Extensions to the model

Although the minimal set of parameters produces an acceptable fit,
we can still investigate whether any of the extensions to the simple
model, summarized in Table 11, are preferred by the data. To do
this, we have performed additional analyses with each of the ex-
tension parameters individually free. The additional data described
in Section 2.4 were included in these analyses in order to constrain
the cosmology as much as possible, maximizing our sensitivity to
the scaling relations. For the parameters controlling evolution with
redshift, we choose the particular form of evolution ζ (z) = 1 + z in
equations (6) and (7); however, our conclusions are identical if the
other commonly chosen function, ζ (z) = E(z), is used.

The parameters controlling evolution in the marginal
temperature–mass scatter and the scatter correlation coefficient, σ ′

tm
and ρ ′

"tm, were not constrained within the allowed region (priors in
Table 11). The best-fitting temperature–mass scatter, σtm = 0.055,
is significantly smaller than the average measurement uncertainty
on t, ∼0.1, so the inability of the data to constrain evolution in the
scatter is perhaps not surprising. Similarly, constraining the scatter
correlation as a function of redshift would require many more data
points, so that the correlation in " and t at similar masses could

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 406, 1773–1795
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paper, the gas mass can be estimated from X-ray data by using
equation (12), and thus our data also provide a measurement of
YX. We can therefore compare Y with YX, in order to establish
observationally whether the two quantities are indeed equivalent.
In the case of the isothermal !-model, the integrated Compton
y-parameter is an integral of the electron density over a cylinder C
of infinite length along the line of sight, and of area A ¼ "r 22500:

YD2
A ¼ kB#TTe

mec2

! "Z

C
ne(r) dV ¼ kB#TTe

mec2

! "
1

mp$e

Z

C
nemp$e dV :

Since the gas mass is given by an integral over a sphere S of
radius r2500,

Mgas ¼
Z

S
nemp$e dV ;

the relationship between Y and YX is

YD 2
A ¼ #T

mec2

! "
1

mp$e

CYX; ð14Þ

where the constant C ¼
R
C ne dV /

R
S ne dV accounts for the dif-

ferent domain of integration of Y and YX, and depends on the

Fig. 4.—Comparison between the SZE Y-parameter and the X-ray quantity YX
(see x 5 for explanation of the normalization constant); open squares are clusters
at 0:14 $ z $ 0:30, and open diamonds are clusters at 0:30 < z $ 0:89. The
dashed black line corresponds to y ¼ x. [See the electronic edition of the Journal
for a color version of this figure.]

Fig. 3.—Comparison between cluster parameters derived from joint analysis of X-ray and SZE data (x-axis) and those derived from SZE data ( y-axis) following the
procedure of x 5. The dashed line corresponds to y ¼ x.
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slope = 1.41
expected = 5/3

Bonamente et al 2008 (BIMA/OVRO)
beta-model fit to visibilities

slope = 1
expected = 1

Bonamente et al 2008 (BIMA/OVRO)
beta-model fit to visibilities

The results of Table 2 indicate no evidence for redshift evo-
lution of the SZE scaling relations, as fgas is consistent with a
constant for both low- and high-redshift clusters. Furthermore,
the SZE scaling relations are consistent with the self-similar
slopes at or below the 2.5 ! level.

5. COMPARISON OF SZE AND X-RAY MEASUREMENTS

In x 4 we have examined the SZE scaling relations based on
quantities derived jointly from SZE and X-ray observations.
Here we compare the cluster properties derived from our SZE
observations without using the X-ray data in the fits, in order to
determine whether the relations that we observe depend strongly
on the X-ray information.
We analyze the SZE data using the model of x 3.2, using

additional assumptions to provide the constraints that would
otherwise be provided by the X-ray data. As a first assumption
we fix " ¼ 0:7 and fit for #c and!T0 in equation (9), following
L2006. The choice of fixing " ¼ 0:7 is determined by the fact
that this is the median value for our sample; L2006 also show
that using values of 0.6 and 0.8 results in changes to the param-
eters that are small relative to the 68% statistical uncertainties. The
data quality allows us to perform this SZE-only analysis for 25 of
the clusters in the full sample, as shown in Table 3. Knowledge of

Fig. 1.—Dependence of fgas onMgas; open-tab squares are clusters at 0:14 "
z " 0:30, and open diamonds are clusters at 0:30 < z " 0:89. The gas fraction at
r2500 shows no evidence of evolution with mass for the clusters in this sample.
[See the electronic edition of the Journal for a color version of this figure.]

Fig. 2.—Scaling relations between the SZE YandMgas,Mtot, and kTe. Open squares are clusters at 0:14 " z " 0:30, and open diamonds are clusters at 0:30 < z " 0:89.
All measurements follow simple power-lawmodels with indices that are consistent with the values of the self-similar scaling theory (Table 1). [See the electronic edition of
the Journal for a color version of this figure.]
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• WL: Okabe et al. (2010)
• SZ: SZA (DPM)
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beta-model fit to visibilities
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YSZ vs. L500
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Melin et al 2011 (WMAP)
matched filter
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expected = 1.25
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matched filter
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TABLE 4
Integrated Compton y−parameters.

ID r2500 r500 β−model Model-independent

(Mpc) (Mpc) YSZ,2500 YSZ,500 YSZ,2500 YSZ,500

Primary Sample
A 2744 0.63 1.40 20.3 ± 0.7 49.2 ± 2.3 19.0 ± 1.4 38.1 ± 6.8
RXCJ0217.2-5244 0.61 1.36 3.3 ± 0.4 6.3 ± 1.0 3.6 ± 0.9 4.8 ± 2.7
RXCJ0232.2-4420 0.52 1.17 11.2 ± 0.4 24.8 ± 1.1 12.9 ± 0.9 26.7 ± 4.3
AS 0520 0.54 1.21 5.7 ± 0.4 13.7 ± 1.4 4.7 ± 0.8 7.2 ± 2.7
RXCJ0528.9-3927 0.53 1.19 11.1 ± 0.7 31.0 ± 2.9 9.8 ± 0.9 22.1 ± 4.4
AS 0592 0.58 1.30 12.9 ± 0.6 24.7 ± 1.6 14.7 ± 2.0 26.0 ± 9.8
A 3404 0.60 1.35 18.2 ± 1.3 34.6 ± 3.1 13.5 ± 3.0 14.0 ± 5.4
1ES 0657-56 0.65 1.44 36.2 ± 0.6 84.9 ± 1.8 30.0 ± 1.0 45.9 ± 4.7
RXCJ2031.8-4037 0.64 1.43 8.4 ± 0.5 16.1 ± 1.4 14.3 ± 1.6 37.0 ± 8.0
A 3888 0.59 1.33 30.1 ± 1.5 60.8 ± 3.7 24.6 ± 3.8 36.1 ± 14.7
AS 1063 0.65 1.44 23.3 ± 0.4 48.3 ± 1.1 25.5 ± 1.1 44.5 ± 5.3

Supplemental Sample
RXCJ0336.3-4037 0.56 1.26 7.5 ± 0.7 13.7 ± 1.7 11.0 ± 2.5 27.8 ± 11.8
RXCJ0532.9-3701 0.62 1.38 12.8 ± 0.7 26.6 ± 1.9 18.1 ± 1.7 42.4 ± 8.0
MACSJ0553.4-3342 0.69 1.52 15.8 ± 0.5 34.3 ± 1.5 14.7 ± 1.4 20.5 ± 5.1
A 3856 0.55 1.23 7.3 ± 0.8 13.1 ± 1.7 7.7 ± 2.9 9.8 ± 6.4

Note. — Units for YSZ are 10−11 sr. Both model-dependent and model-independent estimates are provided (see
text). r2500 and r500 are determined from the temperature-radius scaling relation.

Fig. 9.— Comparisons between SZ and X-ray measurements within r500: YSZ − Mgas (left) and YSZ − YX (right). X-ray values are
taken from the references in Table 1, and clusters without published values in these sources are omitted. SZ values are taken from the
β-model estimates in Table 4. The dashed lines represent the best fit power laws, and the dotted lines represent the best bit powers law
with the slopes fixed to the expected self-similar values of 5/3 (left) and 1 (right).

ter YSZ for each cluster using both model-dependent and
model-independent techniques. The scaling relations be-
tween YSZ and the X-ray-determined Mgas and YX were
found to be reasonably consistent with the self-similar
values. We find no measurable scatter in the scaling rela-
tions, indicating that the intrinsic and systematic scatter
are likely to be low. Previous studies have indicated that
gas mass and YX scale with low scatter to the total clus-
ter mass. These results indicate that YSZ as measured
with the SPT should behave similarly, which is encour-
aging for the ongoing SPT cluster SZ survey.

The data presented in this work demonstrate the util-
ity of SZ measurements for characterizing the ICM out to
large radii. In future works, we will expand the SPT sam-
ple of X-ray luminous clusters, and will include 95 GHz

data in addition to 150 and 220 GHz. The addition of a
third frequency band will allow us to better remove astro-
physical backgrounds such as the CMB, thus improving
our estimates of thermal SZ signals at large radii. Future
analyses will also combine SZ measurements with X-ray
cluster observations in order to separately estimate the
temperature and density of the ICM, and to determine
the cluster gas mass fractions.

The South Pole Telescope is supported by the National
Science Foundation through grants ANT-0638937 and
ANT-0130612. Partial support is also provided by the
NSF Physics Frontier Center grant PHY-0114422 to the
Kavli Institute of Cosmological Physics at the University
of Chicago, the Kavli Foundation and the Gordon and
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Fig. 3. Left: bin averaged SZ flux from a sphere of radius r500 (Y500) as a function of X-ray luminosity in a aperture of r500 (L500). The WMAP
data (red diamonds and crosses), the SZ cluster signal expected from the X-ray based model (blue stars) and the combination of the Y500−M500
and L500−M500 relations (dash and dotted dashed lines) are given for two analyses, using respectively the intrinsic L500−M500 and the REXCESS
L500−M500 relations. As expected, the data points do not change significantly from one case to the other showing that the Y500-L500 relation is rather
insensitive to the finer details of the underlying L500−M500 relation. Right: ratio of data points to model for the two analysis. The points for the
analysis undertaken with the intrinsic L500−M500 are shifted to lower luminosities by 20% for clarity.

The comparison of the two analyses provides an estimate of the
direction and amplitude of the effect of the Malmquist bias on
our results. The REXCESS L500−M500 relation is expected to be
closer to the L500−M500 relation for the NORAS/REFLEX sam-
ple than the intrinsic relation. The discussions and figures cor-
respond to the results obtained when using the former, unless
explicitly specified.

The choice of the L500−M500 relation has an effect both on
the estimated L500, M500 and Y500 values and on the expectation
for the SZ signal from the NORAS/REFLEX clusters. However,
for a cluster of given luminosity measured a given aperture, L500
depends weakly on the exact value of r500 due to the steep drop
of X-ray emission with radius. As a result, and although L500
and M500 (or equivalently r500) are determined jointly in the iter-
ative procedure described in Sect. 2.2, changing the underlying
L500−M500 relation mostly impacts the M500 estimate: L500 is es-
sentially unchanged (median difference of ∼0.8%) and the differ-
ence in M500 simply reflects the difference between the relations
at fixed luminosity. This has an impact on the measured Y500 via
the value of r500 (the profile shape being fixed) but the effect is
also small (<1%). This is due to the rapidly converging nature
of the YSZ flux (see Fig. 11 of Arnaud et al. 2010). On the other
hand, all results that depend directly on M500, namely the de-
rived Y500−M500 relation or the model value for each cluster, that
varies as M5/3

500 (Eq. (5)), depend sensitively on the L500−M500 re-
lation. M500 derived from the intrinsic relation is higher, an ef-
fect increasing with decreasing cluster luminosity (see Fig. B2
of Pratt et al. 2009).

5.3. Other possible sources of uncertainty

The analysis presented in this paper has been performed on
the entire NORAS/REFLEX cluster sample without removal of
clusters hosting radio point sources. To investigate the impact
of the point sources on our result, we have cross-correlated the
NVSS (Condon et al. 1998) and SUMMS (Mauch et al. 2003)
catalogues with our cluster catalogue. We conservatively re-
moved from the analysis all the clusters hosting a total radio
flux greater than 1 Jy within 5 × r500. This leaves 328 clusters

in the catalogue, removing the measurements with large uncer-
tainties visible in Fig. 2 left. We then performed the full analysis
on these 328 objects up to the fitting of the scaling laws, find-
ing that the impact on the fitted values is marginal. For example,
for the REXCESS case, the normalisation of the Y500−M500 rela-
tion decreases from 1.60 to 1.37 (1.6 statistical σ) and the slope
changes from 1.79 to 1.64 (1 statistical σ). The statistical errors
on these parameters decrease respectively from 0.14 to 0.30 and
from 0.15 to 0.40 due to the smaller number of remaining clus-
ters in the sample.

The detection method does not take into account superposi-
tion effects along the line of sight, a drawback that is inherent
to any SZ observation. Thus we cannot fully rule out that our
flux estimates are not partially contaminated by low mass sys-
tems surrounding the clusters of our sample. Numerical simu-
lations give a possible estimate of the contamination: Hallman
et al. (2007) suggest that low-mass systems and unbound gas
may contribute up to 16.3%+7%

−6.4% of the SZ signal. This would
lower our estimated cluster fluxes by ∼1.5σ.

6. The YSZ–L500 relation

6.1. WMAP SZ measurements vs. X-ray model

We first consider bin averaged data, focusing on the luminosity
range L500 ∼> 1043 ergs/s where the SZ signal is significantly de-
tected (Fig. 2 right). The left panel of Fig. 3 shows Y500 from
a sphere of radius r500 as a function of L500, averaging the data
in six equally-spaced logarithmic bins in X-ray luminosity. Both
quantities are scaled according to their expected redshift depen-
dence. The results are presented for the analyses based on the
REXCESS (red diamonds) and intrinsic (red crosses) L500−M500
relations. For the reasons discussed in Sect. 5.2, the derived data
points do not differ significantly between the two analyses (Fig. 3
left), confirming that the measured Y500−L500 relation is insensi-
tive to the finer details of the underlying L500−M500 relation.

We also apply the same averaging procedure to the model
Y500 values derived for each cluster in Sect. 3. The expected
values for the same luminosity bins are plotted as stars in the
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Planck Collaboration: Planck early results: Statistical analysis of SZ scaling relations for X-ray galaxy clusters

Fig. 4. Left: Scaling relation between Planck SZ measurements and X-ray luminosity for ∼ 1600 MCXC clusters. Both quantities
are intrinsic and scaled assuming standard evolution. Individual measurements are shown by the black dots and the corresponding
bin averaged values by the red diamonds. Thick bars give the statistical errors, while the thin bars are bootstrap uncertainties. The
bin-averaged SZ cluster signal expected from the X-ray based model is shown by the blue stars. The combination of the adopted
D2A Y500 – M500 and L500 – M500 relations (Eq. 6) is shown by the dashed blue line while the red dot-dashed line shows the best
fitting power-law to the data (Eq. 7 and Table 4). Right: Ratio between data and model bin averaged values shown in the left panel.
Error bars are as in the left panel.

Table 4. Best fitting parameters for the observed D2A Y500 – L500 relation given in Eq. 7. Values are given for three different choices
of priors and as predicted from X-rays for comparison. Both total errors from bootstrap resampling and statistical errors are quoted.

Ŷ500,L [10−3 arcmin2] α̂L β̂L
0.451 ± 0.003 stat [±0.013 tot] 1.087 (fixed) 2/3 (fixed)

Planck +MCXC 0.447 ± 0.006 stat [±0.015 tot] 1.095 ± 0.008 stat [±0.025 tot] 2/3 (fixed)
0.476 ± 0.006 stat [±0.025 tot] 1.087 (fixed) −0.007 ± 0.154 stat [±0.518 tot]

X-ray prediction 0.428 1.09 2/3

Table 6. Best fitting parameters for the observed D2A Y500 – M500 relation given in Eq. 8. Values are given for three different choices
of priors and as predicted from X-rays for comparison. Both total errors from bootstrap resampling and statistical errors are quoted.

Ŷ500,M [10−3 arcmin2] α̂M β̂M
0.896 ± 0.007 stat [±0.027 tot] 1.783 (fixed) 2/3 (fixed)

Planck +MCXC 0.892 ± 0.008 stat [±0.025 tot] 1.796 ± 0.014 stat [±0.042 tot] 2/3 (fixed)
0.945 ± 0.012 stat [±0.049 tot] 1.783 (fixed) −0.007 ± 0.154 stat [±0.518 tot]

X-ray prediction 0.850 1.783 2/3

tion. Using the simplest model (Eq. 7 or equivalently Eq. 8) we
attempt to constrain the power law index β̂L (or equivalently β̂M).
We find that the measured SZ signal is consistent with standard
evolution (see Table 4) and our constrains on any evolution are
weak. Fig. 6 shows the measured and predicted, redshift binned,
SZ signal, the expected standard redshift evolution, and the best
fitting model. The figure shows that, althoughmeasurements and
predictions agree quite well, the best fitting model is constrained
primarily by the low redshift measurements. Possible future im-
provements are discussed below in Sect. 7.

5.3. Scatter in the D2A Y500 – L500 relation

As discussed in Sect. 4.2, we find a clear indication of intrinsic
scatter in our measurements of the D2A Y500 – L500 relation. In
this section we quantify this scatter and discuss how our mea-

surement compares with expectations based on the representa-
tive REXCESS sample (Arnaud et al. 2010) and the findings re-
ported in the companion paper Planck Collaboration (2011g).

The intrinsic scatter σintr is computed in luminosity bins
as the quadratic difference between the raw scatter σraw (see
Sect. 4.2) and the statistical scatter expected from the statis-
tical uncertainties, i.e. σ2intr = σ

2
raw − σ

2
stat. The latter is esti-

mated by averaging the statistical uncertainties in a given bin,
i.e. σ2stat = N−1

∑

σ2i , where N is the number of clusters in the
bin. For a given luminosity bin, the uncertainty∆σintr on the esti-
mated intrinsic scatter are evaluated by (∆σintr)2 = σ2intr(2N (N−
1))−1

∑

(1 + (σ2i /σ
2
intr))

2.
We find that intrinsic scatter can be measured only for

L500E(z)−7/3 ! 1044erg/s, being the statistical uncertainties at
lower luminosities of the order of the raw scatter (see also Sect.
4.2). In a given bin with average signal Y, the resulting fractional

8
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MKIDs
• Microwave Kinetic Inductance Detectors (Zmuidzinas et al, Day et al, Mazin PhD 

thesis) sense energy deposition via change in superconductor’s kinetic inductance 
(Cooper pair inertia) as measured by frequency shift of resonator

• Can be as sensitive as bolometric detectors, w/many prospective advantages:
• easier to fabricate
• completely athermal

detection mechanism
• highly multiplexable w/large individual 

sensor bandwidth 
due to unique RF readout
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Antenna Coupling and Inline Bandpass Filters
• Feedhorns are bulky, low fill-factor, and monochromatic
• Perform the beam definition with a phased-array antenna (Bock, Day, 

Zmuidzinas)
• planar geometry,

photolithographic
fabrication

• ~octave 
bandwidth

• power exits on 
microstrip
transmission line

• bandpass filters
may be inserted

• separates optical 
absorption from 
power detection
(decouples 
detector size)

• power absorbed
in MKID resonator

Vayonakis
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Antenna Coupling

• Feedhorns are bulky, low fill-factor, and monochromatic
• Perform the beam definition with a phased-array antenna

• planar geometry,
photolithographic
fabrication

• ~octave 
bandwidth

• power exits on 
microstrip
transmission line

• separates optical 
absorption from 
power detection
(decouples 
detector size)

Vayonakis

phased array

radial stub
capacitor

(RF shorts)

slot dipole 
antenna

3 mm slot length, 3 mm array width
16 slots, 16 feeds per slot
188 µm feed and slot spacing
20 micron slot width

40 nm Al MKID

200 nm Nb ground plane
400 nm SiO2 

microstrip dielectric
400 nm Nb wiring layer
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Antenna Coupling

• 100 GHz scale model measurements (narrowband source)

Vayonakis
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Antenna Coupling

• Colors defined by in-line bandpass filters
• lumped-element LC filters
• High out-of-band impedance

allows many filters in parallel
• Maximally efficient use of

all photons received
• Good match to SZ and 

thermal emission from
dusty submm galaxies

Z0
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Z0
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Kumar
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 Finally, optical power is coupled from the microstrip transmission line to the MKID by routing 
the microstrip over the MKID CPW center conductor; with aluminum MKIDs, radiation above 90 GHz 
breaks Cooper pairs and is thus sensed.  With a thermal source, we have demonstrated that approximately 
50% of the power incident on the antenna is transferred to the MKID, in line with expectations.  (We have 
chosen a single-polarization antenna design because it is the only geometry that has a large enough optical 
bandwidth – set by the tap spacing at high frequency and the slot length at low frequency – to afford 
multicolor operation.  The loss of !2 in background-limited sensitivity is more than compensated by the 
simultaneous observation in four colors.)    
 
3.4 Multiplexing Factor 

The number of detectors that may be read out with a single feedline and cryogenic amplifier is 
limited by the quality factor Q of the resonators, the accuracy with which the resonance frequencies may 
be lithographically determined, and the bandwidth of the amplifier. Qs of greater than 10

6
 have been 

demonstrated with resonator FWHMs of a few kHz.  A 54-element test array of uncoupled detectors was 
used to demonstrate that the resonator frequencies can be predicted to within 3 MHz, much larger than the 
achievable FWHM.  Q for optically loaded devices degrades to roughly 10

4
, but this is sufficiently 

smaller than the 3 MHz spacing to ensure separation.  The predictability has been somewhat degraded in 
the more complicated optically coupled design tested so far, but any overlapping resonances can be 
decoupled via linear decomposition as long as they are separated by at least 1 FWHM.  HEMT amplifiers 
that operate over 4-12 GHz are available, enabling the simultaneous readout using a single HEMT of 
2400 detectors spaced by 3 MHz.  For completeness, we note that saturation of the HEMT puts a less 
restrictive limit on the multiplexing factor:  the power for each excitation frequency is at most hundreds 

 

  

Figure 5.  Left:  The 16-
pixel array for the 
demonstration camera.  The 
phased array of 16 slot 
antennae comprising each 
pixel is visible.   
Right:  A photograph of a 

slot antenna, showing the 
microstrip taps that extract 
the power absorbed by the 
slot dipoles.  A 3-stage, in-
line bandpass filter is on the 
right. 
 

 

 

 

 
Figure 6.  Left:  Angular response of an antenna coupled to a SIS mixer to a coherent 100 GHz source. 
Right: Responses of three in-line band-defining filters.  The high-frequency fringing is the result of resonances 
between blocking filters used in these early tests, which will be improved upon for the MKIDCam. 
 

Vayonakis

band 1 filter band 3 filter
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Multicolor Antenna-Coupled MKIDs

Detector development funded by JPL RTD, NASA APRA, Moore Foundation
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• 16-pixel/2-color DemoCam fielded at CSO in 2007 and 2010
• First astronomical photons for antennae, bandpass filters, and MKIDs (2007)

• All components functional, observed planets and bright sources
• Sensitivity ~20x off goal, largely understood at this point; expect

to demonstrate background-limited sensitivity in Sep 2009 run

DemoCam dewar
(old KAO dewar
 found in closet)

RF mux 
readout

Submm/mm MKID Demonstration Camera

1st light on Jupiter
(3 hrs after hitting the 

sky!)
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MUSIC Status

• System-level pieces coming together well
• Dewar/cryogenics working well
• New relay optics done
• Final version of RF readout electronics in hand
• Beams and bandpasses look good

• Challenges: sensitivity being limited by:
• Low optical efficiency: 6-12% for device, expect ~50-60%.

• Working on improving this by fully optimizing AR coatings, etc.
• Direct optical absorption by MKIDs

• Testing modified MKID designs less susceptible to direct absorption
• 1/f in electronics

• New iteration with more careful thermal design
• Studying RF amplifier 1/f; promising results obtained

• Expect to solve these soon and go into production on science arrays!

• Instrument integration summer 2011
• Commissioning in fall, 2011
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