D. Nagai, cluster tSZ emission simulation

Galaxy Clusters: Astrophysical Challenges and Cosmological Uses

 $\Delta - S / N = 2$

MS0451, Bolocam 150 GHz tSZ map

Sunil Golwala JPL/Caltech Seminar May 5, 2011

Figure 6. A schematic representation of a "merger tree" depicting the growth of a halo as the result of a series of mergers. Time increases from top to bottom in this figure and the widths of the branches of the tree represent the masses of the individual parent halos. Slicing through the tree horizontally gives the distribution of masses in the parent halos at a given time. The present time t_0 and the formation time t_f are marked by horizontal lines, where the formation time is defined as the time at which a parent halo containing in excess of half of the mass of the final halo was first created.

http://www.sdss.org/includes/sideimages/sdss_pie2.html

http://www.sdss.org/includes/sideimages/sdss_pie2.html

Millennium Simulation 10.077.696.000 particles

0

Millennium Simulation 10.077.696.000 particles

0

Galaxy Cluster Prime

- Most massive collapsed objects in universe
- Characteristics:
 - R ~ I-3 Mpc (10²⁵ cm), few arcmin, collapsed from ~10 Mpc region
 - $M \sim 10^{14} M_{\odot}$ to few x $10^{15} M_{\odot}$, mostly dark matter
 - Hot baryonic plasma ~ 15-20% of mass
 - $T \sim 10^8 \text{ K} = \text{few keV}$
 - $L_X = 10^{43}$ -10⁴⁵ erg/sec
 - density = 0.001- 0.1/cm³
 - sound crossing time ~ 0.5 Gyr << age
 - \rightarrow close to hydrostatic equilibrium
 - gas somewhere between isothermal (P $\propto \rho)$ and adiabatic (P $\propto \rho^{5/3})$
 - thermal conduction substantial but not perfect
 - metallicity ~ 1/3-1/2 solar
 - 10s to 100s of galaxies, ~2-3% of mass
 - * magnetic field ~ I μG
 - Most formed between *z* = 1 and today
- Observable in O/IR via detection of member galaxies
- Lensing of background galaxies in O/IR maps dark matter

Galaxy Cluster Primer

- Intracluster medium "emission" mechanisms:
 - X-ray emission from thermal bremsstrahlung

9

Self-Similar, Universal Cluster Model

- Assume gravity dominates, not baryonic physics
 - A spherical overdensity breaks away from expansion, collapses, and virializes; density at virialization is cosmology-dependent $\Delta_v \approx 180$. Defines virial radius ("edge of cluster"), total mass M_{tot}

$$\frac{4}{3}\pi\rho_c(z)\Delta_v(z)r_{\rm vir}^3 = M_{\rm tot} \qquad \begin{array}{l} \rho_c(z) = {\rm critical \ density \ at \ redshift \ z} \\ \propto \ E^2(z) = \Omega_{M0}(1+z)^3 + \Omega_{\Lambda} + \Omega_{k0}(1+z)^2 \end{array}$$

• Assume isothermality of gas (virialization to logical extreme) in non-singular isothermal sphere with gas temperature related to galaxy velocities

$$n_e(\mathbf{r}) = n_{e_0} \left(1 + \frac{r^2}{r_c^2} \right)^{-3\beta/2} \quad \beta = \frac{\mu m_p \sigma^2}{k T_e}$$

 σ = ID galaxy velocity dispersion T_e = gas (electron) temperature β = I for ideal gas in equipartition, no gravity

• Require hydrostatic equilibrium (gas pressure provides support against gravity): relates total mass sourcing gravity to gas temperature and density profile

$$M(r) = \frac{3\beta kT_e}{G\mu m_p} \frac{r^3}{r_c^2 + r^2}$$

Scaling Relations

- Self-similar model implies scaling relations between quantities
 - With $M_{tot} = M(r_{vir})$, one has

 $T_e \propto M_{\text{tot}}^{2/3} E(z)^{2/3}$ $E^2(z) = \Omega_{M0}(1+z)^3 + \Omega_{\Lambda} + \Omega_{k0}(1+z)^2$

(cosmological factor due to dependence of ρ_c on z)

• Assuming a universal gas fraction $(f_{gas} = M_{gas}/M_{tot})$, one also has

 $T_e f_{\rm gas}^{2/3} \propto M_{\rm gas}^{2/3} E(z)^{2/3}$

- One can compute observables:
 - X-ray temperature T_X : same as electron temperature T_e . If isothermality valid, then "emission-weighted" vs "mass-weighted" (ρ or ρ^2 weighting) does not matter.
 - X-ray luminosity L_X

$$L_X \propto M_{\rm gas} \rho_{\rm gas} T_e^{1/2} \propto f_{\rm gas}^2 M_{\rm tot} E(z)^2 T_e^{1/2} \propto f_{\rm gas}^2 M_{\rm tot}^{4/3} E(z)^{7/3}$$

• Integrated thermal energy $Y = M_{gas}T_e$, accessible by X-ray estimated M_{gas} and T_X or by integrated thermal Sunyaev-Zeldovich effect flux

$$Y \propto f_{\rm gas} M_{\rm tot} T_e \propto f_{\rm gas} M_{\rm tot}^{5/3} E(z)^{2/3}$$

Scaling Relations: Data

Galaxy Clusters

Self-Similar, Universal Model: Pressure

Clusters as Cosmological Tools

- Scaling relations and universal pressure profile suggest clusters are "well-behaved" and close to self-similar expectations
- What can we do with them?
 - Geometrical tests
 - Angular diameter distance as function of *z*:
 - assume X-ray and SZ derived from same spherical plasma; different dependences on D_A enable reconstruction of D_A (e.g., Bonamente et al 2006)
 - assume f_{gas} is independent of z and use differing dependences of estimates for M_{gas} and M_{tot} on D_A to estimate D_A (e.g., Allen et al 2008)
 - Growth function + volume element tests: indirect measurements of cosmo params Ω_m , Ω_Λ , equation of state parameter w
 - dN(>M)/dz as function of z: abundance of clusters above a mass threshold as function of z measures combination of growth function and volume element, present day value measures normalization of density fluct. PS, σ₈
 - dN/dM as function of z: variation in mass function with z measures growth function, present day value measures normalization of density fluct. PS, σ_8
 - SZ secondary anisotropy spectrum: ensemble of clusters over cosmic time
 - All need connection between M and an observable: scaling relations v. important

Cosmological Tests

- Vikhlinin et al 2009
 - 49 z < 0.35 and 37 0.55 < z < 0.90 clusters, quasi-masslimited sample selected using ROSAT, followed up with Chandra
 - dN/dM vs. z, no evolution of scaling relations

-0.4

-0.6

-0.8

s̃ -1.€

-1.2

-1.6

-1.4 = 0.2

0.60 0

Cosmological Tests

- Mantz et al 2010
 - Statistically complete set of 238 ROSAT
 -selected clusters,
 94 w/Chandra data,
 z < 0.5
 - XLF, f_{gas} analyses
 - Self-consistently find scaling relations, allow (1+z)^γ evolution

Cosmological Tests

17

Vanderlinde et al 2010

- Ensemble of clusters over all z produces secondary anisotropy in CMB
- Measurement does not need redshifts
- Low value of σ₈ and dominance of dusty starforming galaxies (DSFGs) makes it very difficult!
- Relies on templates for power spectra of all components
- Current low S/N detections by SPT in tension with other σ_8 measurements; ACT not precise enough yet. Probably due to insufficient understanding of ICM in cluster outskirts

Galaxy Clusters

Why everything I have said to now is a lie...

Why everything I have said to now is a lie...

Scaling Relations, Revisited

- Power-law slopes usually a good match to self-similarity
- But normalization often reflects deviations
 - e.g. Y_{SZ} vs. M_{gas} data prefer inclusion of radiative cooling and galaxy formation; but data still deviate, and the way they were included is subject to debate
- Observations only now beginning to reach virial radius
 - Perhaps this will reduce such deviations?
- Exhaustive studies of normalization of scaling relations as a function of enclosing radius are needed

data from Bonamente *et al* 2008, simulations by Nagai and Kravtsov 2006

Cool Cores,T(r)

1.5

cT/<kT>

0.5

0.2

r/r₁₈₀

- Generic downward temperature gradient to outskirts
- Cool-core clusters have sharp drop in T at $< 0.1 r_{\rm vir}$
- →Thermal conductivity is not infinite, virialization is not fully valid.

Galaxy Clusters

CC

0.6

cool core

0.4

21

The Cooling-Flow Problem

- Shouldn't the cool cores cool further?
 - Bremsstrahlung radiative cooling time obeys:

 $t_{\rm cool} = 85 \text{ Gyr} (10^{-3} \text{ cm}^{-3}/n_e) (T_e/10^8 \text{ K})^{1/2}$

- t_{cool} > age of universe at large radius, but t_{cool} is shorter in cool cluster cores bec. n_e larger by ×10-100 and T_e reduced: Gas should condense out of ICM.
 - $\rightarrow dM_{gas}/dt = -(100-500) \text{ M}_{\odot}/\text{yr}$
 - → expect low-energy line emission from "cooled" gas, "cooling flow" inward to replenish lost material
- But they don't: cold gas emission not seen by XMM (Peterson et al 2001, 2003), Chandra.
- Classical cooling flow discarded. Current belief:
 - entropy injection from galaxies likely to prevent condensatic
 - Detailed mechanism not yet solid: hard to get high enough efficiency. Many good ideas, though, will be interesting to see these tested.
 - Some reduced version of cooling flows may be present (e.g., Voit, Donahue et al):
 - Signs of enhanced star formation in central galaxies when $t_{\rm cool}$ is short
 - Self-regulation? Enhanced star formation > entropy injection into ICM, heating up remaining gas.
 - Similar feedback mechanism for AGN (cold ICM gas feeds AGN, which then heats ICM)

Gas Mass Fraction and Entropy

- Gas mass fraction increases with r and M, always < universal value.
- Entropy profiles
 - Entropy $(kT/n_e^{2/3})$ reflects non-adiabatic effects, so reflects non-self-similar history
 - Entropy is elevated in non-cool-core clusters.
 - See large variations in entropy profile, with convergence to self-similar behavior occurring at smaller r/r_{500} for larger M; entropy floor effects more important at lower M
- Product of gas fraction and entropy much better matches self-similarity
 - \rightarrow Elevated entropy due to reduced gas density due to loss of gas. May explain $L_X \propto T_X^3$ deviation from $L_X \propto T_X^2$ self-similar expectation.

 Cool-core clusters may have not suffered disturbing events that eject gas, enabling cooling. Sunil Golwala

Turbulence

- Turbulence and convection generally expected because thermal conductance is not infinite and it may be anisotropic due to B fields.
- Can be probed by searching for excess spectral line widths; upper limits very constraining in some cases.

Questions, Questions, Questions

Does the dark matter profile evolve with time? Is it reflective of the redshift of formation?

How much dark matter substructure is preserved?

Does the ICM have bulk motions? What do they tell us about the cluster assembly history? What is the baryon fraction as a function of radius and redshift?

How are the baryons divided among stars, cold gas, and hot gas?

How much does the ICM deviate from hydrostatic equilibrium?

What is the metallicity as a function of radius and redshift?

How is the kinetic energy of infalling gas thermalized?

What is the size and cause of temperature gradients in the ICM?

What is the role of radiative cooling?

What is the microscopic plasma physics of the ICM: thermal conductivity, viscosity, electron-ion equilibration time? Is the ICM stable against convective instability?

What is the form and effect of feedback from galaxies (AGN, winds, cosmic rays?)

Is the ICM turbulent? Why?

What is the cosmic ray content of the ICM? What impact does it have on the thermodynamics?

> How do scaling relation parameters depend on formation history and current morphology?

How did cluster magnetic fields come into existence and evolve?

What is the magnetohydrodynamics of the ICM, and how does it affect the plasma's properties?

What are the systematic limits on our ability to constrain cosmology with clusters?

Spitzer and WISE

- Spitzer
 - IRAC Shallow Cluster Survey (Eisenardt et al.)
 - Galaxy overdensities selected using wavelet filter applied to 4.5µm IRAC images + photometric z data in 7.25 deg2
 - dN/dz matches predictions
 - SpARCS: Spitzer Adaptation of the Red-Sequence Cluster Survey
 - Uses "red sequence" in R/3.6 µm color vs. 3.6 µm flux to identify
 - 99 clusters in Spitzer FLS already; ~I3x area, $\sqrt{2}$ deeper in process
- WISE
 - Similar searches on full sky beginning
 - Shallower \rightarrow larger M; better for SZ, X-ray

Num

Planck

Search using multifrequency matched filter

- Separates SZ from CMB, point sources
- Early SZ cluster sample
 - 169 known clusters, 20 new, 0 < z < 0.55, I-15 x 10^{14} M_{Sun}
 - Clusters not resolved (7' FHWM at 150 GHz), so parameter estimation depends on X-ray info

/₅₀₀E(z)^{-2/3}(D_A(z)/500 Mpc)² [arcmin²

10⁻⁵

0.1

- Optical, X-ray, SZ followup will enhance utility
- Future releases will increase stats, go to higher z

10⁻³ 10 XMM-Newton archive ♦ Planck Y_{SZ} vs. L_{500} . subset (X-ray data to ***** Model estimate M. Ξ(z)^{-2/3} D²^A Υ₅₀₀ [Mpc²] 62 clusters) 10^{-3} 10-4 10 slope = 1.095expected = 1.25Observed Planck Collaboration (2011) **10**⁻⁵ Corrected

*Large JPL group deeply involved in Planck, produced Early Release Compact Source Catalog

Galaxy Clusters

Sunil Golwala

CLASH

- Cluster Lensing and Supernova survey with Hubble
 - 25-cluster Hubble Treasury program; PI: Marc Postman; JPL lead: Lexi Moustakas
 - HST strong lensing, 16 filters to maximize photo-z determination of bgnd sources (2' FoV), Subaru weak lensing (30' FoV)
 - Ancillary data includes
 - Chandra and XMM X-ray (8'-30' FoV)
 - SZ: SZA 2' resolution/30 GHz/12' FoV, MUSTANG 9" resolution/90 GHz/1' FoV Bolocam 1' resolution/150 GHz/8' FoV
 - First results on Abell 383 out (Zitrin et al.)
 - very precise HST lensing constraints!

Bolocam SZ Followup

- Built with Bock, Nguyen at JPL, Glenn (CU), Lange, Golwala (CIT)
- Sayers on NPP at JPL during this work; developed Spitzer and CLASH collaborations
- Czakon on GSRP at JPL

Galaxy Clusters

Υ 500

2.5

5.0

X-ray gas mass

10.0

M_{GAS} 10¹³M_{SOLAR}

35.0

Sunil Golwala

20.0

Bolocam SZ Followup

- Initial 5-cluster sample (Sayers et al 2011)
 - All show evidence of ellipticity in plane of sky;mean ellipticity = 0.27±0.03
 - All fit generalized NFW well except A697, which shows NE/SW asymmetry
 - Sensitivity out to r_{vir} at high z
- 40 clusters reduced, scaling relation in hand

Bolocam SZ Followup

- Joint deprojection with X-ray data
 - Ameglio et al 2007, 2009, work w/Pierpaoli and Ameglio at USC
 - Assume onion-skin structure for cluster and fit density and temperature model to observed data
 - Apply regularization to likelihood to minimize 2nd derivative
 - Gives T_X profile without X-ray spectroscopy; mass-weighted and unbiased; n_e also recovered very precisely and accurately
 - Gives M(r) using hydrostatic equilibrium; small biases
 - Other deprojection methods also possible (e.g., Abel integral)

Cluster SZ with MUSIC

- MUlticolor Sub/millimeter Inductance Camera: deploying late 2011
- New technologies enable ~background-limited, multi-color camera (850 µm - 2 mm) with wide FOV (14', 600 spatial pixels)
 - Large-format planar photolithographic phased-array antennas: ~2:1 bandwidth
 - Planar photolithographic bandpass filters: many colors from a single antenna
 - Microwave Kinetic Inductance Detectors (MKIDs): a new, highly multiplexable detector (Day, LeDuc, Zmuidzinas)
- Deeper integrations on CLASH, ~200 clusters based on Planck, WISE, ACT

Technologies dev'd w/support from Caltech trustee Alex Lidow, JPL RTD, NASA, Moore Foundation.

Camera dev'd w/ NSF, Moore Foundation support

Sunil Golwala

32

MUSIC Galaxy Cluster Studies

• Study galaxy clusters across wavelength regime where SZ gives way to DSFGs; separate SZ, CMB, and DSFGs using multicolor information.

The MUSIC Team

- Instrument Team
 - CU: Jason Glenn, Phil Maloney, James Schlaerth (past GSRP)
 - JPL: Peter Day, Rick LeDuc, Hien Nguyen
 - Caltech: Nicole Czakon (GSRP), Tom Downes, Ran Duan, Sunil Golwala, Matt Hollister (NPP), Dave Miller, Omid Noroozian, Jack Sayers (past NPP), Seth Siegel, Tasos Vayonakis, Jonas Zmuidzinas
 - UCSB: Ben Mazin, Sean McHugh
- Survey Team
 - Arizona: Dan Marrone
 - JPL/Caltech: Ranga-Ram Chary
 - CU: Alex Conley
 - Rutgers: Andrew Baker
- Science Team
 - Caltech: Andrew Benson
 - CU: Nils Halverson
 - JPL/IPAC/Caltech: Colin Borys, Darren Dowell, Olivier Dore
 - USC: Elena Pierpaoli

Next-Generation X-Ray Observatories

- Cluster studies at higher z will soon become limited by X-ray followup
 - e.g. $z = 1.45 \times MMXCS J2215.9-1738$: $T_X = 7.4 \text{ keV } +/- 20\%$ with ~200 ksec XMM-Newton time, 1100 photons detected!
 - Need: higher throughput, better energy resolution for spectral lines, lower bgnd
- Astro-H
 - Increased A_{eff} at high E: more sensitive to high T_X
 - ΔE/E ~ 0.1% (1-2% for Chandra/XMM): new sensitivity to turbulence
- eROSITA
 - First all-sky survey since ROSAT (early 1990s), 30x better sensitivity
 - Clusters to z > I!
- IXO...

Next-Generation SZ with CCAT

- Cerro Chajnantor, Atacama, Chile, 5600m
- Cornell, Caltech/JPL, + partners (incl. Canada, Colorado, Germany)
- Wavelengths 2-0.2 mm, Frequencies 150-1500 GHz
- Surface accuracy 10 μm
- 25-m; angular resolution 2-20"
- Facility instruments:
 - Large FoV submm/mm cameras
 - Multi-object spectroscopy
- Coincident with ALMA
- www.submm.org
- Substantial JPL technical and scientific involvement
 on primary deformation control and science from star formation to cosmology

Next Generation SZ with CCAT

- Vital characteristics
 - Site much better than Mauna Kea
 - Larger dish (25 m vs. 10 m CSO)
 → 0.4' at 150 GHz, 0.2' at 275 GHz
 - Large $A_{tel} \Omega_{FoV}$ product; FoV = I°
- SZ: Higher angular resolution followup of clusters from wide-area surveys
 - good angular resolution out to R_{vir}
 - better sensitivity to point sources
 - cluster substructure and calibration
- Instrumentation: MUSIC follow-on
 - Cover 5-6 colors in each pixel, 750 µm to 2 or 3 mm
 - Multiscale pixels to match pixel size to Airy function (wider bandwidth)
 - New channelizer concept? Enormous spectral information.

Band GHz (µm)	Δν (GHz)	Pixel Size f·λ	Number of Spatial Pixels
150 (2000)	30	2.3	$16 \text{ tiles} \times 64 = 1024$
220 (1400)	40	3.2	$16 \text{ tiles} \times 64 = 1024$
275 (1100)	50	2.1	$16 \text{ tiles} \times 256 = 4096$
350 (870)	40	0.7 2.8	4 tiles×4096 = 16384 12 tiles × 256 = 3072
405 (740)	30	0.8 3.2	4 tiles×4096 = 16384 12 tiles × 256 = 3072
Total			45,056 detectors

Galaxy Clusters

Questions, Questions, Questions

Does the dark matter profile evolve with time? Is it reflective of the redshift of formation?

How much dark matter substructure is preserved?

Does the ICM have bulk motions? What do they tell us about the cluster assembly history? What is the baryon fraction as a function of radius and redshift?

How are the baryons divided among stars, cold gas, and hot gas?

How much does the ICM deviate from hydrostatic equilibrium?

What is the metallicity as a function of radius and redshift?

How is the kinetic energy of infalling gas thermalized?

What is the size and cause of temperature gradients in the ICM?

What is the role of radiative cooling?

What is the microscopic plasma physics of the ICM: thermal conductivity, viscosity, electron-ion equilibration time? Is the ICM stable against convective instability?

What is the form and effect of feedback from galaxies (AGN, winds, cosmic rays?)

Is the ICM turbulent? Why?

What is the cosmic ray content of the ICM? What impact does it have on the thermodynamics?

> How do scaling relation parameters depend on formation history and current morphology?

How did cluster magnetic fields come into existence and evolve?

What is the magnetohydrodynamics of the ICM, and how does it affect the plasma's properties?

What are the systematic limits on our ability to constrain cosmology with clusters?

Scaling Relations: X-ray Only

Scaling Relations: SZ and X-ray

Galaxy Clusters

Sunil Golwala

MKIDs

- Microwave Kinetic Inductance Detectors (Zmuidzinas et al, Day et al, Mazin PhD thesis) sense energy deposition via change in superconductor's *kinetic inductance* (Cooper pair inertia) as measured by frequency shift of resonator
- Can be as sensitive as bolometric detectors, w/many prospective advantages:

Day et al, Nature (2003)

- easier to fabricate
- completely athermal detection mechanism
- highly multiplexable w/large individual sensor bandwidth due to unique RF readout

Galaxy Clusters

Antenna Coupling and Inline Bandpass Filters

- Feedhorns are bulky, low fill-factor, and monochromatic
- Perform the beam definition with a phased-array antenna (Bock, Day, Zmuidzinas)
 - planar geometry, photolithographic fabrication Feedline ~octave Aluminum Ground Plane bandwidth power exits on Band Pass Filter CPW Center Strip Niobium Ground Plane microstrip transmission line bandpass filters may be inserted separates optical absorption from power detection (decouples RF Shorts detector size) power absorbed in MKID resonator Slot Antenna Feed Network

Vayonakis

Antenna Coupling

Antenna Coupling

• 100 GHz scale model measurements (narrowband source)

Antenna Coupling

Multicolor Antenna-Coupled MKIDs

Detector development funded by JPL RTD, NASA APRA, Moore Foundation

Submm/mm MKID Demonstration Camera

- I6-pixel/2-color DemoCam fielded at CSO in 2007 and 2010
- First astronomical photons for antennae, bandpass filters, and MKIDs (2007)
- All components functional, observed planets and bright sources
- Sensitivity ~20x off goal, largely understood at this point; expect to demonstrate background-limited sensitivity in Sep 2009 run

Bolocam

MUSIC Status

- System-level pieces coming together well
 - Dewar/cryogenics working well
 - New relay optics done
 - Final version of RF readout electronics in hand
 - Beams and bandpasses look good
- Challenges: sensitivity being limited by:
 - Low optical efficiency: 6-12% for device, expect ~50-60%.
 - Working on improving this by fully optimizing AR coatings, etc.
 - Direct optical absorption by MKIDs
 - Testing modified MKID designs less susceptible to direct absorption
 - I/f in electronics
 - New iteration with more careful thermal design
 - Studying RF amplifier 1/f; promising results obtained
 - Expect to solve these soon and go into production on science arrays!
- Instrument integration summer 2011
- Commissioning in fall, 2011